پیاده سازی مقاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی
چکیده:
پیاده سازی مقاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی
چکیده:
پیاده سازی مقاله: ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم های ماشین بردار پشتیبان، جنگل و درخت تصمیم
چکیده:
امروزه بیماری مزمن کلیه یکی از مهمترین بیماریهای رایج بین افراد جامعه بخصوص بزرگسالان است. این بیماری در واقع نوعی مرگ خاموش محسوب میشود زیرا این بیماری از دسته بیماریهای مزمن است و یکباره فرد به این بیماری مبتلا نمی شود و ممکن است، سالهای سال مبتلا به این بیماری باشد بدون اینکه کوچکترین علائمی از خود نشان دهد و زمانی علائم خود را بروز دهد که به بدترین وضعیت بیماری برسد و منجر به خطر افتادن جان بیمار یا صرف هزینه های بسیاری برای دیالیز یا پیوند کلیه های بیمار شود. هدف این پژوهش ارائه مدل هوشمند برای کمک به شناسایی و تشخیص بیماری کلیه با استفاده از روشها و الگوریتم های یادگیری ماشین و داده کاوی برروی مجموعه داده کلیه دانشگاه کلیولند کالیفرنیا است. در این تحقیق برای ساخت مدل پیشبینی در ابتدا مجموعه داده اصلی را به دو مجموعه داده آموزش/ ارزیابی و مجموعه داده آزمایش تقسیم کردیم. به کمک مجموعه داده آموزش/ارزیابی با استفاده از روش اعتبار سنجی متقابل fold-10 و الگوریتم های درخت تصمیم، جنگل تصادفی و ماشین بردار پشتیبان مدل را ایجاد کرده و دقت نهایی مدل در این پژوهش را به کمک مجموعه داده آزمایش ارزیابی کرده ایم. در انتها نتایج بدست آمده با الگوریتم های جنگل تصادفی و ماشین بردار پشتیبان با دقت های 89,98 %بالاترین دقت را دراین پژوهش حاصل کرده است.
پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
چکیده:
استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.
پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی
چکیده:
بدافزار به هرگونه برنامه کامپیوتری اطلاق می شود که دارای اهداف مخرب باشد. این برنامه ها مهمترین تهدید برای سیستم هایکامپیوتری به حساب می آیند. تنوع این بدافزارها باعث محدود شدن راه کارهای مقابله با آنها شده است، به گونه ای که روزانه میلیون ها سیستمکامپیوتری بر اثر آسیب های ناشی از انواع ویروس ها، تروجان ها و کرم های اینترنتی و غیره آلوده می شوند. در سال های اخیر یکی از مهمترینچالش های امنیت اطلاعات و شبکه های ارتباطی، افزایش روز افزون انواع بدافزارها و به دنبال آن یافتن راه های مناسب جهت حفاظت سیستم ها درمقابل آنهاست که از مهمترین دغدغه های برنامه نویسان و متخصصین امنیت اطلاعات، شناخت به موقع و یافتن راه های مقابله با اثرات مخرباینگونه بدافزارها می باشد. در این راستا طی سالهای اخیر استفاده از الگوریتم های داده کاوی و هوش مصنوعی بعنوان یکی از روشهای نوظهور وامیدوار کننده توانسته است کاربرد بسیاری جهت شناسایی و تشخیص انواع بدافزارها داشته باشد. لذا در این تحقیق سعی کردیم با استفاده ازشبکه عصبی مصنوعی و الگوریتم ازدحام ذرات، فایل های آلوده به بدافزار را تشخیص دهیم. پیاده سازی روش پیشنهادی نشان میدهد که توانستهاست فایل های آلوده به بدافزار را با استفاده از مجموعه داده مربوط به فایل های سالم و آلوده به بدافزار با دقت 0.91 درصد تشخیص دهد که نشان ازعملکرد بالای آن دارد.
پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی
چکیده:
با گسترش روز افزون استفاده از سامانه های نوین بانکی و افزایش تعداد عملیات بانکی، سوء استفاده های مالی و تقلب در این عملیات بیشاز پیش گسترش پیدا کرده است. اینگونه سوء استفاده ها علاوه بر اتلاف منابع مالی، باعث کاهش اعتماد مشتریان به استفاده از سامانه های نوینبانکی و در نتیجه کاهش اثر بخشی این سامانه ها در مدیریت بهینه ی سرمایه و تراکنش های مالی می شود. در این پژوهش جهت کشف تقلببانکی بر روی مجموعه داده های بانکی ، از ترکیب الگوریتم های داده کاوی استفاده شده است. برای انجام کار در ابتدا، خوشه بندی رکوردهای دادهای موجود در مجموعه داده ها صورت گرفته است و به دنبال آن، تشخیص تراکنش های بانکی شبهه دار، در زمان انجام تراکنش تشخیص داده میشود. نتایج حاصل نشان می دهد که روش پیشنهادی دارای میزان دقت بالاتری نسبت به الگوریتم های داده کاوی دیگر همچون درخت تصمیم J48و جنگلهای تصادفی دارد.
پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه
چکیده:
با توجه به گسترش و توسعه سریع شبکه های کامپیوتری، نفوذ و حملات به آن ها افزایش یافته و به طرق و شیوه های مختلف انجام می شود. هدف از تشخیص نفوذ برای شناسایی استفاده غیرمجاز، سوء استفاده، و آسیب پذیری های ایجاد شده توسط کاربران داخلی و مهاجمان خارجی است. در این مقاله قصد داریم که سیستم تشخیص نفوذ از نوع سوء استفاده مبتنی بر سیستم فازی و الگوریتم جستجوی ممنوعه را ارائه کنیم. در ابتدا دانش موردنیاز خود را از سیستم فازی که مجموعه ای از قوانین if-then است، را کسب کرده و سپس الگوریتم جستجوی ممنوعه برای بهینه کردن مجموعه قوانین به دست آمده را بر روی مجموعه داده NSL-KDD پیاده و اجرا نمودیم. نتایج به دست آمده در مقایسه با نتایج موجود حاکی از آن است که روش پیشنهادی از صحت و کارایی مناسبی برخوردار است.