پیاده سازی الگوریتم ژنتیک در پایتون(Python):
الگوریتمهای ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راهحل تقریبی برای بهینهسازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکاملی است که از تکنیکهای زیستشناسی فرگشتی مانند وراثت، جهش زیستشناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیشبینی یا تطبیق الگواستفاده میشود. الگوریتمهای ژنتیک اغلب گزینه خوبی برای تکنیکهای پیشبینی بر مبنای رگرسیون هستند. در مدلسازی الگوریتم ژنتیک یک تکنیک برنامهنویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده میکند. مسئلهای که باید حل شود دارای ورودیهایی میباشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راهحلها تبدیل میشود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار میگیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه مییابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخشهای آن به صورت فرایندهای تصادفی انتخاب میشوند که این الگوریتمها از بخشهای تابع برازش، نمایش، انتخاب وتغییر تشکیل میشوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.
در این پروژه، با استفاده از پایتون، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.
موارد قابل تحویل:
- فایل های شبیه سازی مربوط در پایتون
- مستندات پروژه، شامل توضیحات مربوط به فعالیت های صورت گرفته
- فایل ارائه ی پاورپوینت
- فیلم آموزشی برای آشنایی دقیق تر با فرآیند پیاده سازی
- مجموعه داده ی مورد استفاده در پروژه
- امکان آماده سازی این پروژه با سایر زبان ها، نظیر جاوا، ++C، متلب، #C، دلفی، R، انواع بیسیک، زبان های سمت سرور نظیر PHP و ... فراهم است.
- شریف پژوه