۳۰ مطلب با کلمه‌ی کلیدی «الگوریتم ژنتیک» ثبت شده است

سفارش انجام پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک

سفارش انجام پروژه تشخیص نفوذ در شبکه های کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک:

 

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی مشکلات ارتوپدی

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم ژنتیک در محیط رایانش ابری (CloudSim)

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم ژنتیک در محیط رایانش ابری (CloudSim)

در این پروژه، با استفاده از الگوریتم ژنتیک (genetic algorithm)، تعادل بار در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی بیماری کلیوی

سفارش انجام پروژه داده کاوی تشخیص بیماری کلیوی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

کلیه یکی از اندام‌های درونی بدن انسان و برخی دیگر از جانداران است. کار کلیه تصفیه خون از مواد زائد و دفع متابولیت‌های بدن می‌باشد جالب است بدانید انسان می‌تواند با ۲۰٪ کلیه‌هایش زندگی نسبتاً سالمی داشته باشد. کلیه نقش مهمی در دفع مواد زائد و تعادل آب و الکترولیتها در بدن دارد. نارسایی حاد کلیوی در اثر تخریب کلیه‌ها پدید می‌آید و با فقدان سریع عملکرد کلیوی مشخص می‌شود. این بیماری منجر به ناهنجاری‌های الکترولیتی و بر پایه اسید و احتباس فراورده‌های زاید نیتروژنی از قبیل اوره و کراتینین می‌گردد. برای مطالعه جزییات بیشتر در مورد کلیه و بیماری های آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به بیماری کلیوی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک:

 

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به پیش بینی قیمت سهام مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم ژنتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده‌سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

پیاده سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

 
چکیده:
 در این مقاله یک سیستم استنتاج عصبی- فازی برای تشخیص افراد مبتلا به بیماری دیابت پیشنهاد میکنیم. ایده این مقاله، استفاده از روشی جدید در آموزش سیستم فازی طراحی شده با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازیازدحام ذرات است. روش پیشنهادی با استفاده از نرم افزار متلب بر مجموعه داده بیماران دیابتی هندی موجود در مخزن داده یادگیری ماشین پیاده سازی شده است. شاخص های عملکردی این سیستم حساسیت، اختصاصیت و دقت است که در بهترین حالت به ترتیب 63/49و96/11و89/78درصد بدست آمده است.

  • شریف پژوه

تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک

سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته می‌شود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic Algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ژنتیک برای شناسایی اعداد دست نویس

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ژنتیک برای شناسایی اعداد دست نویس:

 

در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی سرطان

سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک

سفارش انجام پروژه پیش بینی ریزش مشتری (Customer churn) با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک:


رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در دلفی (Delphi)

پیاده سازی الگوریتم ژنتیک در دلفی (Delphi):

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از دلفی (Delphi)، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

زمانبندی بهینه کارها با استفاده از الگوریتم ژنتیک در محیط رایانش ابری (با استفاده از CloudSim)

سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم ژنتیک در محیط رایانش ابری (CloudSim):

در این پروژه، با استفاده از الگوریتم ژنتیک (genetic algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در جاوا (JAVA)

پیاده سازی الگوریتم ژنتیک در جاوا (JAVA):

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از جاوا، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در زبان R

پیاده سازی الگوریتم ژنتیک در زبان R:

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در پایتون(Python)

پیاده سازی الگوریتم ژنتیک در پایتون(Python):

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از پایتون، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در متلب(MATLAB)

پیاده سازی الگوریتم ژنتیک در متلب(MATLAB):

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پروژه چند وزیر (هشت وزیر) با الگوریتم ژنتیک در متلب

پروژه هشت وزیر با الگوریتم های تکاملی در متلب:

مسئله چند وزیر یک معمای شطرنجی و ریاضیاتی است که بر اساس آن باید n وزیر شطرنج در یک صفحه n×n شطرنج به‌گونه‌ای قرار داده شوند که هیچ‌یک زیر ضرب دیگری نباشند. با توجه به اینکه وزیر به‌صورت افقی، عمودی و اُریب حرکت می‌کند، باید هر وزیر را در طول، عرض و قطر متفاوتی قرار داد. اولین و مشهورترین شکل این مسئله معمای هشت وزیر است که برای حل آن باید ۸ وزیر را در یک صفحهً معمولی (۸×۸) شطرنج قرار داد. این مسئله ۹۲ جواب دارد که ۱۲ جواب آن منحصر به‌فرد است یعنی بقیه جواب‌ها از تقارن جواب‌های اصلی به‌دست می‌آید. برای مطالعه ی بیشتر کلیک کنید.

در این پژوه به کمک روش تکاملی ژنتیک، مسئله ی هشت وزیر در محیط متلب (Matlab) پیاده سازی شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات
Archive