مشاوره رایگان انجام پروژه


  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم ژنتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم ممتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک(Memetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی کرم شب تاب (Firefly algorithm) در متلب(MATLAB)

پیاده سازی الگوریتم بهینه سازی کرم شب تاب (Firefly algorithm) در متلب(MATLAB):

در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم یهینه سازی کرم شب تاب به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ژنتیک برای شناسایی اعداد دست نویس

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ژنتیک برای شناسایی اعداد دست نویس:

 

در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

دریافت ویدیوی آموزشی خوشه بندی K-Means

ویدیوی آموزشی خوشه بندی K-Means

 

 

  • شریف پژوه

پروژه داده کاوی تشخیص بیماری های قلبی با نرم افزار رپیدماینر (RapidMiner)

سفارش انجام پروژه داده کاوی تشخیص بیماری های قلبی:

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از نرم افزار رپیدماینر (RapidMiner)، مجموعه داده های مربوط به بیماری های قلبی مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی بیماری کلیوی

سفارش انجام پروژه داده کاوی تشخیص بیماری کلیوی به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

کلیه یکی از اندام‌های درونی بدن انسان و برخی دیگر از جانداران است. کار کلیه تصفیه خون از مواد زائد و دفع متابولیت‌های بدن می‌باشد جالب است بدانید انسان می‌تواند با ۲۰٪ کلیه‌هایش زندگی نسبتاً سالمی داشته باشد. کلیه نقش مهمی در دفع مواد زائد و تعادل آب و الکترولیتها در بدن دارد. نارسایی حاد کلیوی در اثر تخریب کلیه‌ها پدید می‌آید و با فقدان سریع عملکرد کلیوی مشخص می‌شود. این بیماری منجر به ناهنجاری‌های الکترولیتی و بر پایه اسید و احتباس فراورده‌های زاید نیتروژنی از قبیل اوره و کراتینین می‌گردد. برای مطالعه جزییات بیشتر در مورد کلیه و بیماری های آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به بیماری کلیوی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی بیماری دیابت

سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین می‌رود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمی‌تواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلول‌های بتا در پانکراس منجر به نقص تولید انسولین می‌شود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلول‌های بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری با پایتون (Python)

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از پایتون (Python)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی مشکلات ارتوپدی

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی سرطان

سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ماشین بردار پشتیبان با روش کلونی زنبور عسل برای تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های ماشین بردار پشتیبان و الگوریتم کلونی زنبور عسل:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های ماشین بردار پشتیبان (support vector machine) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی سیستم فازی در متلب (MATLAB)

پیاده سازی ANFIS در متلب :

منطق فازی شکلی از منطق‌های چندارزشی بوده که در آن مقادیر درستی متغیرها ممکن است هر عدد حقیقی بین 0 و 1 و خود صفر و یک باشد. این منطق به منظور به کارگیری مفهوم درستی جزئی استفاده می شود به طوری که مقادیر آن می تواند بین کاملا درست و کاملا غلط باشد. منطق فازی از منطق ارزش‌های «صفر و یک» نرم‌افزارهای کلاسیک فراتر رفته و درگاهی جدید برای دنیای علوم نرم‌افزاری و رایانه‌ها می‌گشاید، زیرا فضای شناور و نامحدود بین اعداد صفر و یک را نیز در منطق و استدلال‌های خود به کار برده و به چالش می‌کشد. 

در این پروژه، با استفاده از متلب (MATLAB)، پیاده سازی سیستم فازی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم ممتیک در محیط رایانش ابری (CloudSim)

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم ممتیک در محیط رایانش ابری (CloudSim):

در این پروژه، با استفاده از الگوریتم ممتیک (memetic algorithm)، تعادل بار در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ممتیک برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی هارمونی برای داده کاوی بیماری قلبی

سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی (harmony search algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:


با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ممتیک برای داده کاوی بازاریابی مستقیم (Direct marketing)

سفارش انجام پروژه داده کاوی بازاریابی مستقیم به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:

بازاریابی مستقیم (Direct Marketing) یعنی استفاده از کانال های مستقیم مصرف کننده، برای رساندن و تحویل کالاها و خدمات به مشتریان بدون استفاده از واسطه های بازاریابی. این کانال ها شامل پست مستقیم، کاتالوگ ها، بازاریابی تلفنی، تلویزیون تعاملی، دکه ها، وب سایت ها، و تجهیزات همراه می شوند. بازاریاب های مستقیم به دنبال یک پاسخ قابل اندازه گیری، مثل سفارش مشتری هستند. برای مطالعه جزییات بیشتر در مورد بازاریابی مستقیم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به بازاریابی مستقیم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات