۱۶ مطلب با موضوع «پروژه الگوریتم رقابت استعماری» ثبت شده است

دریافت ویدیوی آموزشی بهینه سازی شبکه ی عصبی با الگوریتم رقابت استعماری

برای نمایش مطلب باید رمز عبور را وارد کنید
  • شریف پژوه

انجام پروژه بهبود یادگیری عمیق با الگوریتم رقابت استعماری برای شناسایی اعداد دست نویس

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم رقابت استعماری برای شناسایی اعداد دست نویس:

 

در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی

پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی

چکیده:

هدف بررسی کارایی الگوریتم رقابت استعماری در پیش بینی ورشکستگی بوده، در این مطالعه با بررسی برخی از داده های مرتبط با ورشکستگی، صورت های مالی شرکت های موجود در بازار بورس ایران و با مشاهده تجربی و تجارب پژوهش های گذشته به انتخاب متغیرهای اصلی در پیش بینی ورشکستگی پرداخته شده، سپس به دلیل انطباق بیشتر مدل با واقعیت، با توجه به ارتباط داده های متغیرهای اصلی با دیگر داده های در دسترس، به انتخاب متغیرهای فرعی پرداخته شده است. 6 متغیر اصلی و 18 متغیر فرعی اولیه، برای شرکت های نمونه ورشکسته با سه معیار ورشکستگی و برای شکرتهای نمونه غیر وزشکسته با انتخابی تصادفی، استخراج گشته است. معیارهای تعیین ورشکستگی با توجه با نگاهی فرآیندی برگزیده شده اند، معیار اول ماده 141 قانون تجارت و معیار دوم، معیار نسبت بدهی به دارایی ها می باشد، معیار سوم که در آن نسبت جمع حقوق صاحبان سهام به ارزش اسمی سهام، معیار تشخیص ورشکستگی است برای پوشش انتقادهای وارده به این معیار لحاظ گردیده است، به این صورت که اگر این نسبت کمتر از یک باشد شرکت ورشکسته تلقی می گردد. بازه زمانی انتخاب نمونه سال 1389 بوده و بازه رمانی استخراج داده ها سال های 1387 تا 1389 بوده است. تجزیه و تحلیل آماری روی این متغیرها منجر به حذف بعضی از آنها در معیارهای مختلف گشته و مدلی با بهره گیری از الگوریتم رقابت استعماری، متغیرهای اصلی و متغیرهای فرعی برای هر یک از سه معیار، طراحی و ارائه شده است که به نقطه آغازین وابسته نیست از این رو دسته بندی اولیه متغیرهای اصلی و فرعی تاثیری رخروجی مدل ندارد. مدل با استفاده از اطلاعات شرکت های ورشکسته و شرکت های غیر ورشکسته ارزیای شده و نتایج نشان میدهد که ورشکستگی را می توان با دقت نسبتا بالایی با مدل حاصل پیش بینی نمود.
  • شریف پژوه

سفارش پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:

 

با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری

سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:

فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته می‌شود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه تشخیص نفوذ در شبکه کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:

 

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه تشخیص اسپم با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه تشخیص اسپم با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:

 

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:

 

رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر

پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر

چکیده:

 با پیشرفت تکنولوژی در زمینه داده کاوی، مجموعه های دادهای با ابعاد بالا در حال افزایش است که در آن بسیاری ازویژگیها بی ربط و زاید هستند و منجر به کاهش کارایی الگوریتم های دسته بندی میشود؛ بنابراین، کاهش ابعاد این مجموعه های دادهای تبدیل به یک تلاش ضروری شده است. انتخاب ویژگی یک تکنیک رایج برای غلبه بر این مشکل است که هدف آن، شناسایی زیرمجموعه ای از ویژگیهای مفید از بین مجموعه ویژگیهای اولیه برای بهبود عملکرد طبقه بندی است. در این مقاله، روش جدیدی برای انتخاب ویژگی مبتنی بر راهکار فیلتر به نامSimRelICA ارایه میشود. در روش پیشنهادی با بکارگیری الگوریتم رقابت استعماری چارچوبی ارایه شده که فرآیند انتخاب ویژگی را مستقل از هر طبقه بندی کننده، انجام میدهد. در ابتدا، هر کشور با استفاده از یک شکل جدید، بازنمایی میشود. سپس با توجه به این بازنمایی،روش جدیدی برای تولید جمعیت اولیه پیشنهاد شده است. در طی یک فرآیند تکرارشونده، روش پیشنهادی یک زیرمجموعه ویژگی مناسب را انتخاب میکند که در آن از تابع هزینه جدید برای محاسبه هزینه هر کشور استفاده شده است. این تابع هزینه به شکلی ارایه شده است که مناسب بودن هر ویژگی را ارزیابی میکند. عملکرد روش پیشنهادی با روشهای انتخاب ویژگی شناخته شده، با استفاده از طبقه بندی کنندههای مختلف مقایسه شده است. نتایج آزمایشها نشان از برتری روش پیشنهادیSimRelICA به لحاظ دقت طبقهبندی، بر روشهای انتخاب ویژگی موجود دارد. همچنین نتایج نشان میدهد که با توجه به مستقل بودن روش پیشنهادی از طبقه بندی کننده، عملکرد مناسبی بر روی طبقه بندی کننده های مختلف داشته است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم رقابت استعماری برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه بهبود فرآیند تشخیص تقلب با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه پیش بینی تشخیص تقلب با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:


تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:


در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی قیمت سهام مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

زمانبندی بهینه کارها با استفاده از رقابت استعماری در محیط رایانش ابری (با استفاده از CloudSim)

سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم رقابت استعماری در محیط رایانش ابری (CloudSim):

در این پروژه، با استفاده از الگوریتم رقابت استعماری (Imperialist Competitive Algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم رقابت استعماری در محیط رایانش ابری (CloudSim)

سفارش انجام پروژه تعادل بار با استفاده از الگوریتم رقابت استعماری در محیط رایانش ابری (CloudSim)

در این پروژه، با استفاده از الگوریتم رقابت استعماری (Imperialist competitive algorithm)، تعادل بار در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم رقابت استعماری در پایتون(Python)

پیاده سازی الگوریتم رقابت استعماری در پایتون(Python):

در این پروژه، با استفاده از پایتون(Python)، پیاده سازی الگوریتم رقابت استعماری به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

دریافت ویدیوی آموزشی بهینه سازی درخت تصمیم با الگوریتم رقابت استعماری

برای نمایش مطلب باید رمز عبور را وارد کنید
  • شریف پژوه
موضوعات