- شریف پژوه
سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم رقابت استعماری برای شناسایی اعداد دست نویس:
در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی
چکیده:
سفارش انجام پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص نفوذ در شبکه کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص اسپم با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروههای خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم میگویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار میگرفت و همچنین ناقص بودن قوانین بینالمللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال میشوند. امروزه اسپمها بهطور عمده با هدفهای تجاری منتشر میشوند ولی اسپمهای غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روشهای متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده میشود. سازمانها و شرکتهایی مانند بانکها، شرکتهای مخابراتی، ارائهدهندگان خدمات اینترنتــی (ISP)، شرکتهای تلویزیون کابلی، شرکتهای بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان بهعنوان یکی از معیارهای کلیدی سنجش در کسبوکار استفاده میکنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاههای اقتصادی، اغلب واحدها و بخشهایی به نام خدمات مشــتریان دارند که سعی میکنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق میکنند. برای مطالعه ی بیشتر کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر
پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر
چکیده:
با پیشرفت تکنولوژی در زمینه داده کاوی، مجموعه های دادهای با ابعاد بالا در حال افزایش است که در آن بسیاری ازویژگیها بی ربط و زاید هستند و منجر به کاهش کارایی الگوریتم های دسته بندی میشود؛ بنابراین، کاهش ابعاد این مجموعه های دادهای تبدیل به یک تلاش ضروری شده است. انتخاب ویژگی یک تکنیک رایج برای غلبه بر این مشکل است که هدف آن، شناسایی زیرمجموعه ای از ویژگیهای مفید از بین مجموعه ویژگیهای اولیه برای بهبود عملکرد طبقه بندی است. در این مقاله، روش جدیدی برای انتخاب ویژگی مبتنی بر راهکار فیلتر به نامSimRelICA ارایه میشود. در روش پیشنهادی با بکارگیری الگوریتم رقابت استعماری چارچوبی ارایه شده که فرآیند انتخاب ویژگی را مستقل از هر طبقه بندی کننده، انجام میدهد. در ابتدا، هر کشور با استفاده از یک شکل جدید، بازنمایی میشود. سپس با توجه به این بازنمایی،روش جدیدی برای تولید جمعیت اولیه پیشنهاد شده است. در طی یک فرآیند تکرارشونده، روش پیشنهادی یک زیرمجموعه ویژگی مناسب را انتخاب میکند که در آن از تابع هزینه جدید برای محاسبه هزینه هر کشور استفاده شده است. این تابع هزینه به شکلی ارایه شده است که مناسب بودن هر ویژگی را ارزیابی میکند. عملکرد روش پیشنهادی با روشهای انتخاب ویژگی شناخته شده، با استفاده از طبقه بندی کنندههای مختلف مقایسه شده است. نتایج آزمایشها نشان از برتری روش پیشنهادیSimRelICA به لحاظ دقت طبقهبندی، بر روشهای انتخاب ویژگی موجود دارد. همچنین نتایج نشان میدهد که با توجه به مستقل بودن روش پیشنهادی از طبقه بندی کننده، عملکرد مناسبی بر روی طبقه بندی کننده های مختلف داشته است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی تشخیص تقلب با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم رقابت استعماری:
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی قیمت سهام مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم رقابت استعماری در محیط رایانش ابری (CloudSim):
در این پروژه، با استفاده از الگوریتم رقابت استعماری (Imperialist Competitive Algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تعادل بار با استفاده از الگوریتم رقابت استعماری در محیط رایانش ابری (CloudSim)
در این پروژه، با استفاده از الگوریتم رقابت استعماری (Imperialist competitive algorithm)، تعادل بار در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
پیاده سازی الگوریتم رقابت استعماری در پایتون(Python):
در این پروژه، با استفاده از پایتون(Python)، پیاده سازی الگوریتم رقابت استعماری به همراه توضیحات مربوطه، ارائه می گردد.
- هوش مصنوعی (۳۸۴)
- پروژه رپیدماینر(RapidMiner) (۲۶)
- پروژه وکا(Weka) (۲۰)
- پروژه نایم(Knime) (۲۰)
- پروژه پایتون(Python) (۶۴)
- پروژه R (۳۰)
- پروژه کلمنتاین(clementine) یا مدلر(IBM Spss Modeler) (۱۶)
- پروژه شبکه عصبی (۱۱۲)
- پروژه الگوریتم ژنتیک (۳۷)
- پروژه الگوریتم ممتیک (۲۳)
- پروژه الگوریتم جستجوی هارمونی (۳۰)
- پروژه تکامل تفاضلی (۳۲)
- پروژه بهینه سازی ازدحام ذرات (۳۴)
- پروژه الگوریتم کلونی زنبور عسل (۳۴)
- پروژه عقیده کاوی (۱۷)
- پروژه ماشین بردار پشتیبان (۱۴)
- مقالات (۶۲)
- پروژه الگوریتم رقابت استعماری (۱۶)
- پروژه الگوریتم درخت تصمیم (۳۹)
- پروژه سیستم ایمنی مصنوعی (۱۶)
- دریافت ویدیوهای آموزشی (۴۸)
- یادگیری عمیق(Deep Learning) (۱۴)
- پردازش تصویر (۱۰)
- پروژه الگوریتم بهینه سازی چندهدفه (NSGA-II) (۴)
- پروژه متلب(MATLAB) (۳۸)
- برنامه نویسی (۹۴)
- پروژه C شارپ (۶)
- پروژه C پلاس پلاس (۶)
- پروژه جاوا(JAVA) (۴)
- پروژه دلفی (Delphi) (۴)
- یادگیری انتقالی(Transfer Learning) (۱)
- سیستم توصیه گر (recommender system) (۴)
- شبکه کاوی(Social media mining) (۱)
- رایانش ابری (Cloud Computing) (۱۹)
- کلودسیم (CloudSim) (۱۸)
- پروژه الگوریتم فاخته (۸)
- پروژه الگوریتم خفاش (۲)
- دوره های آموزشی (۶)
- پروژه الگوریتم کرم شب تاب (۱)
- سیستم خبره (۳)
- پروژه های مشترک (۱۱)
- تدریس رایگان (۱)
-
Nader
باسلام و وقت بخیر ... -
پریسا
سلام چطور میتونم کد پایتون این پروژه رو داشته باشم؟ -
مجتبی
سلام لطفا کد ... -
فرشاد
سلام و ادب، می شه کد رو برای من ارسال کنید؟ -
آرش
سلام و وقت بخیر. امکانش هست کد رو برای من ارسال کنید؟ -
علی
سلام لطفا کد رو برای بنده ارسال کنید. با تشکر -
مصطفی
با سلام سپاسپگزارم اگر ... -
زهرا
سلام
- پروژه داده کاوی تشخیص تقلب در کارت های اعتباری با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)
- پروژه تشخیص اسپم با استفاده از تلفیق شبکه ی عصبی و الگوریتم کلونی زنبور عسل
- پروژه داده کاوی تشخیص بیماری دیابت با پایتون(Python)
- دریافت ویدیوی آموزشی بهینه سازی شبکه ی عصبی با الگوریتم رقابت استعماری
- پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)
- بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری
- پیاده سازی مقاله: طبقه بندی زیرگروه ویروس آنفولانزا با استفاده از تکنیک های داده کاوی
- پروژه داده کاوی تشخیص بیماری کلیوی با نرم افزار وکا(Weka)
- سفارش انجام پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک
- بهینه سازی شبکه عصبی با الگوریتم جستجوی فاخته برای پیش بینی ورشکستگی
- شهریور ۱۴۰۳ ( ۴ )
- مرداد ۱۴۰۳ ( ۴ )
- تیر ۱۴۰۳ ( ۳ )
- خرداد ۱۴۰۳ ( ۵ )
- ارديبهشت ۱۴۰۳ ( ۴ )
- فروردين ۱۴۰۳ ( ۴ )
- اسفند ۱۴۰۲ ( ۲ )
- بهمن ۱۴۰۲ ( ۲ )
- دی ۱۴۰۲ ( ۴ )
- آذر ۱۴۰۲ ( ۳ )
- آبان ۱۴۰۲ ( ۶ )
- مهر ۱۴۰۲ ( ۲ )
- شهریور ۱۴۰۲ ( ۷ )
- مرداد ۱۴۰۲ ( ۱۲ )
- تیر ۱۴۰۲ ( ۱۱ )
- خرداد ۱۴۰۲ ( ۲ )
- ارديبهشت ۱۴۰۲ ( ۴ )
- فروردين ۱۴۰۲ ( ۱ )
- شهریور ۱۴۰۱ ( ۱ )
- تیر ۱۴۰۱ ( ۱ )
- خرداد ۱۴۰۱ ( ۲ )
- ارديبهشت ۱۴۰۱ ( ۲ )
- فروردين ۱۴۰۱ ( ۱ )
- اسفند ۱۴۰۰ ( ۲ )
- بهمن ۱۴۰۰ ( ۱ )
- دی ۱۴۰۰ ( ۲ )
- آذر ۱۴۰۰ ( ۲ )
- آبان ۱۴۰۰ ( ۲ )
- مهر ۱۴۰۰ ( ۳ )
- شهریور ۱۴۰۰ ( ۶ )
- مرداد ۱۴۰۰ ( ۳ )
- تیر ۱۴۰۰ ( ۳ )
- خرداد ۱۴۰۰ ( ۴ )
- ارديبهشت ۱۴۰۰ ( ۵ )
- فروردين ۱۴۰۰ ( ۶ )
- اسفند ۱۳۹۹ ( ۶ )
- آذر ۱۳۹۹ ( ۱ )
- مهر ۱۳۹۹ ( ۳ )
- شهریور ۱۳۹۹ ( ۲ )
- تیر ۱۳۹۹ ( ۱ )
- خرداد ۱۳۹۹ ( ۵ )
- ارديبهشت ۱۳۹۹ ( ۱۳ )
- فروردين ۱۳۹۹ ( ۴ )
- اسفند ۱۳۹۸ ( ۲ )
- دی ۱۳۹۸ ( ۱ )
- آذر ۱۳۹۸ ( ۵ )
- آبان ۱۳۹۸ ( ۲ )
- مهر ۱۳۹۸ ( ۱ )
- شهریور ۱۳۹۸ ( ۴ )
- مرداد ۱۳۹۸ ( ۱۲ )
- تیر ۱۳۹۸ ( ۹ )
- خرداد ۱۳۹۸ ( ۱۳ )
- ارديبهشت ۱۳۹۸ ( ۶۶ )
- فروردين ۱۳۹۸ ( ۱۱۴ )
- اسفند ۱۳۹۷ ( ۳۹ )
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در پایتون(Python)
- پروژه داده کاوی تشخیص بیماری دیابت با پایتون(Python)
- پروژه داده کاوی تشخیص بیماری های قلبی با پایتون (Python)
- پیاده سازی الگوریتم ژنتیک در پایتون(Python)
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)
- پروژه داده کاوی تشخیص بیماری های قلبی با نرم افزار وکا (Weka)
- پروژه داده کاوی تشخیص تقلب با نرم افزار رپیدماینر (RapidMiner)
- پروژه داده کاوی بازاریابی مستقیم (Direct marketing) با پایتون (Python)
- پروژه داده کاوی تشخیص سرطان با پایتون (Python)
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پروژه داده کاوی تشخیص تقلب در کارت های اعتباری با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)
- پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
- سفارش انجام پروژه تعادل بار با استفاده از الگوریتم تکامل تفاضلی در محیط رایانش ابری (CloudSim)
- پروژه داده کاوی امتیاز اعتباری (Credit scoring) با نرم افزار وکا (Weka)
- پروژه داده کاوی تشخیص سرطان با نرم افزار کلمنتاین(clementine) یا مدلر(IBM Spss Modeler)
- پروژه داده کاوی تشخیص سرطان با زبان R
- بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص تقلب در کارت های اعتباری
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)
- پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در پایتون(Python)