پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی
چکیده:
دریافت مقاله:
برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.
پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی
چکیده:
دریافت مقاله:
سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:
به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم سیستم ایمنی مصنوعی:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم سیستم ایمنی مصنوعی (artificial immune system)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی(harmony search algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:
سرطان نامی است که به مجموعهٔ بیماریهایی اطلاق میشود که از تکثیر مهارنشده سلولها پدید میآیند. سلولهای سرطانی از سازوکارهای عادی تقسیم و رشد سلولها جدا میافتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلولها میشوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد میتوان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعههایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و جستجوی فاخته:
جراحی ارتوپدی (Orthopedic surgery) یا استخوانپزشکی به شاخهای از علم پزشکی گفته میشود که شامل درمان بیماریها و اصلاح ناهنجاریهای مربوط به استخوانها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic Algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم فاخته:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم فاخته (Cuckoo search)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم سیستم ایمنی مصنوعی:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و سیستم ایمنی مصنوعی (Artificial immune system)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:
دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین میرود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمیتواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلولهای بتا در پانکراس منجر به نقص تولید انسولین میشود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلولهای بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستوی فاخته (Cuckoo search)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:
فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته میشود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری کلیوی به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:
کلیه یکی از اندامهای درونی بدن انسان و برخی دیگر از جانداران است. کار کلیه تصفیه خون از مواد زائد و دفع متابولیتهای بدن میباشد جالب است بدانید انسان میتواند با ۲۰٪ کلیههایش زندگی نسبتاً سالمی داشته باشد. کلیه نقش مهمی در دفع مواد زائد و تعادل آب و الکترولیتها در بدن دارد. نارسایی حاد کلیوی در اثر تخریب کلیهها پدید میآید و با فقدان سریع عملکرد کلیوی مشخص میشود. این بیماری منجر به ناهنجاریهای الکترولیتی و بر پایه اسید و احتباس فراوردههای زاید نیتروژنی از قبیل اوره و کراتینین میگردد. برای مطالعه جزییات بیشتر در مورد کلیه و بیماری های آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به بیماری کلیوی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:
دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین میرود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمیتواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلولهای بتا در پانکراس منجر به نقص تولید انسولین میشود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلولهای بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:
جراحی ارتوپدی (Orthopedic surgery) یا استخوانپزشکی به شاخهای از علم پزشکی گفته میشود که شامل درمان بیماریها و اصلاح ناهنجاریهای مربوط به استخوانها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:
سرطان نامی است که به مجموعهٔ بیماریهایی اطلاق میشود که از تکثیر مهارنشده سلولها پدید میآیند. سلولهای سرطانی از سازوکارهای عادی تقسیم و رشد سلولها جدا میافتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلولها میشوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد میتوان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعههایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:
امتیاز اعتباری یک عبارت عددی است که با تکنیکهای آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقهای فرد یا شرکت هستند محاسبه میشود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیمگیری بر این مبنا، در مقایسه با روشهای سلیقهای و گزارشهای متنی، به مراتب قابل اطمینانتر و منصفانهتر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.