چکیده: یکی از چالشهای تشخیص تقلب در حوزه سیستم های پرداخت الکترونیکی، تنوع و تغییر مداوم شیوههای تقلب است لذا نیاز به روش های تشخیص تقلب با کارایی و دقت باال به روشنی قابل درک است. در این پژوهش روش داده کاوی رگرسیون لجستیک، شبکه عصبی BP و شبکه عصبی GMDH برای ساخت مدلهایی جهت شناسایی تقلب در تراکنشهای مالی دستکاه خودپرداز یک بانک پیاده سازی شدند. در ادامه، این روشها برروی دادههای واقعی آزمایش و کارایی هر روش سنجیده شد. روش شبکه عصبی GMDH با دقت 19.37 درصد در شناسایی تقلب یا غیرتقلب بودن تراکنشهای مالی بهترین کارایی را در مقایسه با دو روش رگرسیون لجستیک با دقت کلی 98.63 و شبکه عصبی BP با دقت کلی 0..34داشت. باتوجه به نتایج بدست آمده روش پیشنهادی در تشخیص تقلب نسبت به دو روش دیگر با دقت بیشتری عمل کرده است.
پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی پیش بینی قیمت سهام
سرمایه گذاری در سهام عرضه شده در بورس اوراق بهادار یکی از گزینه های پرسود در بازار سرمایه است. با این وجود بازار سهام دارای سیستمی غیر خطی و آشوب گونه است که تحت تاثیر شرایط سیاسی، اقتصادی و روانشناسی می باشد. از این رو نحوه ی مدیریت و پیش بینی قیمت سهام برای سرمایه گذاران در بازار سهام اهمیت فراوانی دارد. برای حل مسئله ی پیش بینی قیمت سهام می توان از سیستم های هوشمند غیرخطی استفاده نمود. در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای حل این مسئله ارائه می شود.
پیاده سازی مقاله: زمان بندی وظایف در محیط ابری با استفاده از الگوریتم ژنتیک
چکیده:
پیاده سازی مقاله: بررسی کاربرد چارچوب های تحلیل عظیم داده ها در پیش بینی زلزله
چکیده:
پیاده سازی مقاله: طبقه بندی زیرگروه ویروس آنفولانزا با استفاده از تکنیک های داده کاوی
چکیده:
پیاده سازی مقاله: پیش بینی قیمت سهام بانک صادرات با استفاده از شبکه عصبی مصنوعی
چکیده:
پیاده سازی مقاله: تشخیص افراد ریسکی در صنعت بیمه با استفاده از درخت تصمیم Hoeffding
چکیده:
پیاده سازی مقاله: ارائه یک سیستم خبره فازی جهت مدیریت ریسک پروژه ها
چکیده:
پیاده سازی مقاله: ترکیبی از الگوریتم سیاه چاله با الگوریتم تبرید تدریجی
چکیده:
پیاده سازی مقاله: استفاده از سیستم تکاملی ایمنی مصنوعی برای امنیت شبکه های کامپیوتری
چکیده:
پیاده سازی مقاله: شناسایی و رتبه بندی موانع موثر بر عدم استفاده معلمان از فناوری اطلاعات و ارتباطات
چکیده:
پیاده سازی مقاله: آموزش شبکه عصبی مصنوعی چند لایه مبتنی بر الگوریتم خفاش اصلاح شده
چکیده:
پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی
چکیده:
پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی
چکیده:
دریافت مقاله:
برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.
پیاده سازی پایان نامه: بهبود امنیت در شبکه های اینترنت اشیا با استفاده از یادگیری ماشینی
از زمان شروع اینترنت اشیا (IoT)، تعداد دستگاه های اینترنت اشیا متصل به اینترنت به سرعت رشد کرده است. با این حال، بسیاری از دستگاه های اینترنت اشیا فاقد استانداردهای امنیتی هستند که دستگاه های غیر اینترنت اشیا دارند. این بدان معنی است که میلیاردها دستگاه هوشمند می توانند به عنوان بخشی از یک حمله استفاده شوند. پتانسیل بهره برداری از دستگاه های اینترنت اشیا، جستجو برای یافتن اقدامات امنیتی مناسب اینترنت اشیا را بسیار مهم می کند. به منظور رفع این نیاز، این مطالعه راهکاری جدید با استفاده از یادگیری ماشین برای بهبود امنیت IoT پیشنهاد می کند.
پیاده سازی مقاله: تشخیص جرایم سایبری در ارتباطات برخط با رویکرد داده کاوی
چکیده:
چکیده: با استفاده از دانش عقیده کاوی میتوان دانش بسیار خوبی از عموم جامعه در شبکههای اجتماعی درباره موضوعات مختلف به دست آورد. با استفاده از عقیده کاوی میتوانیم کشف کنیم که افراد چه عقایدی درباره موضوعات مختلف دارند و چه نظراتی دادهاند که با تحلیل این نظرات نتایج جالبی میتوانیم به دست آوریم، دانش نظر کاوی زیر مجموعه علم داده کاوی میباشد. با تحلیل احساسات و نظرات میتوانیم دلیل شکست یا موفقیت موضوعات مختلف در جامعه را از دید کاربران به دست آوریم. در این پژوهش ما یک روش جدید برای عقیده کاوی در شبکههای اجتماعی درباره فیلمهای سینمایی ارائه کردهایم. نتیجه این تحقیق نشان میدهد که علت موفقیت یا شکست یک فیلم از دید کاربران چه بوده است، در روش پیشنهادی نظرات کاربران ابتدا بر اساس کلمات کلیدی و هشتگ های مهم برچسب گذاری میشود که نظر مثبت میباشد یا منفی و در ادامه بعد از برچسب گذاری تحلیلی برای نظرات انجام میشود که تعداد لایک هر نظر تأثیر بالایی در تحلیل دارد، نتایج شبیه سازی و مقایسه روش پیشنهادی نشان میدهد که روش پیشنهادی از دقت بالایی برخوردار میباشد و میتوان از روش پیشنهادی در دیتاست های مختلف فارسی مورد استفاده قرار داد.
پیاده سازی مقاله: روش جدید تشخیص فیشینگ مبتنی بر ترکیب الگوریتم پنگوئن و داده کاوی
چکیده:
با دسترسی آسان به اینترنت، بسیاری از کسب و کارها فعالیت های خود را در شبکه های وابسته به اینترنت انجام می دهند. اما هموره مخاطرات امنیتی از جمله حملات فیشینگ این کسب و کارها را تهدید می کنند. تعدد ویژگی های صفحات وب، منجر به استفاده از روش های انتخاب ویژگی و ترکیب آنها با روش های یادیگیر به منظور تشخیص فیشینگ شده است. عملکرد مناسب الگوریتم فرا ابتکاری پنگوئن در یافتن پاسخ بهینه، ایده اصلی این مقاله جهت بررسی نحوه عملکرد این الگوریتم در مسئله تشخیص فیشینگ بوده است. بنابراین از تریکب الگوریتم پنگوئن در فاز انتخاب ویژگی با شبکه عصبی مصنوعی در فاز تشخیص فیشینگ استفاده شده است. برای آموزش و ارزیایی روش پینشهادی از یک مجموعه داده با 11055 نمونه وبسایت های فیشینگ و عادی استفاده شده است. نتایج پیاده سازی در محیط متلب نشان می دهد با افزایش اندازه جمعیت و تعداد تکرار در الگوریتم بهینه سازی پنگوئن، مقدار متوسط تابع انتخاب ویژگی 69.57%، و شاخص RMSE حدود 24.56% کاهش یافته است. همچنین روش پیشنهادی در مقایسه با شبکه عصبی مصنوعی چند لایه حدود 29.16% خطای کمتر در تشخیص فیشینگ را نشان می دهد.
پیاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی
بهداشت و درمان به یکی از بزرگترین صنایع در سطح جهان تبدیل شده است و به همین دلیل منابع زیادی را مصرف می کند. در سالهای اخیر بستری مجدد در بیمارستان به دلیل هزینههای غیرضروری در سیستم مراقبتهای بهداشتی به موضوعی قابل توجه تبدیل شده است. بسیاری از بستریهای مجدد قابل پیشگیری به کیفیت پایین مراقبت در طول اقامت بیمار در بیمارستان و همچنین به ضعیف فرآیند ترخیص مربوط میشود. در سال های اخیر به کارگیری تکنیک های داده کاوی توانسته مداخلات موثر و پیشگیرانه را برای آن اجرا کند.
پیاده سازی پایان نامه: داده کاوی برای انتخاب ویژگی در داده های بیان ژن
شناسایی مهمترین ژنها و توالیهای ژنی (عنوان ویژگیها) ذخیرهشده در مجموعه دادهای از ریزآرایههای بیان ژن یکی از مسائل مهم در حوزه ی پزشکی است. انتخاب مهمترین ژنها و طبقهبندی موارد بر اساس ژنهای انتخابی با استفاده از تکنیک های داده کاوی یکی از راهکار های موجود در این زمینه است.
- هوش مصنوعی (۳۸۴)
- پروژه رپیدماینر(RapidMiner) (۲۶)
- پروژه وکا(Weka) (۲۰)
- پروژه نایم(Knime) (۲۰)
- پروژه پایتون(Python) (۶۴)
- پروژه R (۳۰)
- پروژه کلمنتاین(clementine) یا مدلر(IBM Spss Modeler) (۱۶)
- پروژه شبکه عصبی (۱۱۲)
- پروژه الگوریتم ژنتیک (۳۷)
- پروژه الگوریتم ممتیک (۲۳)
- پروژه الگوریتم جستجوی هارمونی (۳۰)
- پروژه تکامل تفاضلی (۳۲)
- پروژه بهینه سازی ازدحام ذرات (۳۴)
- پروژه الگوریتم کلونی زنبور عسل (۳۴)
- پروژه عقیده کاوی (۱۷)
- پروژه ماشین بردار پشتیبان (۱۴)
- مقالات (۶۲)
- پروژه الگوریتم رقابت استعماری (۱۶)
- پروژه الگوریتم درخت تصمیم (۳۹)
- پروژه سیستم ایمنی مصنوعی (۱۶)
- دریافت ویدیوهای آموزشی (۴۸)
- یادگیری عمیق(Deep Learning) (۱۴)
- پردازش تصویر (۱۰)
- پروژه الگوریتم بهینه سازی چندهدفه (NSGA-II) (۴)
- پروژه متلب(MATLAB) (۳۸)
- برنامه نویسی (۹۴)
- پروژه C شارپ (۶)
- پروژه C پلاس پلاس (۶)
- پروژه جاوا(JAVA) (۴)
- پروژه دلفی (Delphi) (۴)
- یادگیری انتقالی(Transfer Learning) (۱)
- سیستم توصیه گر (recommender system) (۴)
- شبکه کاوی(Social media mining) (۱)
- رایانش ابری (Cloud Computing) (۱۹)
- کلودسیم (CloudSim) (۱۸)
- پروژه الگوریتم فاخته (۸)
- پروژه الگوریتم خفاش (۲)
- دوره های آموزشی (۶)
- پروژه الگوریتم کرم شب تاب (۱)
- سیستم خبره (۳)
- پروژه های مشترک (۱۱)
- تدریس رایگان (۱)
-
مهدی کشاورز
سلام. امکانش هست فایل رو برای منم ارسال کنید. سپاسگزارم -
محمد
سلام لطفا کد الگوریتم NSGA-II برام بفرستین -
Sajad
سلام وقت بخیر میشه کد الگوریتم nsga-ll برام بفرستید -
Mansoureh Mirzaei
با سلام و عرض ادب میشه ... -
مجید
سلام و خسته ... -
Nader
باسلام و وقت بخیر ... -
پریسا
سلام چطور میتونم کد پایتون این پروژه رو داشته باشم؟ -
مجتبی
سلام لطفا کد ...
- بهینه سازی شبکه عصبی با روش بهینه سازی ازدحام ذرات برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری
- سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس
- سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی
- بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی بیماری دیابت
- پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی
- بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی بیماری قلبی
- بهینه سازی شبکه عصبی با روش بهینه سازی ازدحام ذرات برای داده کاوی تشخیص تقلب در کارت های اعتباری
- بهینه سازی ماشین بردار پشتیبان با روش کلونی زنبور عسل برای پیش بینی نقص در ماژول های نرم افزاری
- پیاده سازی مقاله: تشخیص بیماری آریتمی قلبی با استفاده از یادگیری عمیق
- پروژه پیش بینی نرخ جرم و جنایت با استفاده از تلفیق درخت تصمیم و الگوریتم سیستم ایمنی مصنوعی
- تیر ۱۴۰۴ ( ۱ )
- خرداد ۱۴۰۴ ( ۴ )
- ارديبهشت ۱۴۰۴ ( ۴ )
- اسفند ۱۴۰۳ ( ۴ )
- بهمن ۱۴۰۳ ( ۲ )
- دی ۱۴۰۳ ( ۴ )
- آذر ۱۴۰۳ ( ۴ )
- آبان ۱۴۰۳ ( ۲ )
- مهر ۱۴۰۳ ( ۴ )
- شهریور ۱۴۰۳ ( ۴ )
- مرداد ۱۴۰۳ ( ۴ )
- تیر ۱۴۰۳ ( ۳ )
- خرداد ۱۴۰۳ ( ۵ )
- ارديبهشت ۱۴۰۳ ( ۴ )
- فروردين ۱۴۰۳ ( ۴ )
- اسفند ۱۴۰۲ ( ۲ )
- بهمن ۱۴۰۲ ( ۲ )
- دی ۱۴۰۲ ( ۴ )
- آذر ۱۴۰۲ ( ۳ )
- آبان ۱۴۰۲ ( ۶ )
- مهر ۱۴۰۲ ( ۲ )
- شهریور ۱۴۰۲ ( ۷ )
- مرداد ۱۴۰۲ ( ۱۲ )
- تیر ۱۴۰۲ ( ۸ )
- خرداد ۱۴۰۲ ( ۲ )
- ارديبهشت ۱۴۰۲ ( ۳ )
- تیر ۱۴۰۱ ( ۱ )
- خرداد ۱۴۰۱ ( ۲ )
- ارديبهشت ۱۴۰۱ ( ۲ )
- فروردين ۱۴۰۱ ( ۱ )
- اسفند ۱۴۰۰ ( ۲ )
- بهمن ۱۴۰۰ ( ۱ )
- آذر ۱۴۰۰ ( ۱ )
- آبان ۱۴۰۰ ( ۱ )
- مهر ۱۴۰۰ ( ۲ )
- شهریور ۱۴۰۰ ( ۵ )
- مرداد ۱۴۰۰ ( ۳ )
- تیر ۱۴۰۰ ( ۳ )
- خرداد ۱۴۰۰ ( ۴ )
- ارديبهشت ۱۴۰۰ ( ۵ )
- فروردين ۱۴۰۰ ( ۶ )
- اسفند ۱۳۹۹ ( ۶ )
- آذر ۱۳۹۹ ( ۱ )
- مهر ۱۳۹۹ ( ۲ )
- شهریور ۱۳۹۹ ( ۲ )
- تیر ۱۳۹۹ ( ۱ )
- خرداد ۱۳۹۹ ( ۵ )
- ارديبهشت ۱۳۹۹ ( ۱۰ )
- فروردين ۱۳۹۹ ( ۲ )
- اسفند ۱۳۹۸ ( ۲ )
- دی ۱۳۹۸ ( ۱ )
- آذر ۱۳۹۸ ( ۴ )
- آبان ۱۳۹۸ ( ۲ )
- مهر ۱۳۹۸ ( ۱ )
- شهریور ۱۳۹۸ ( ۴ )
- مرداد ۱۳۹۸ ( ۱۲ )
- تیر ۱۳۹۸ ( ۹ )
- خرداد ۱۳۹۸ ( ۱۳ )
- ارديبهشت ۱۳۹۸ ( ۶۶ )
- فروردين ۱۳۹۸ ( ۱۰۶ )
- اسفند ۱۳۹۷ ( ۳۷ )
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در پایتون(Python)
- پروژه داده کاوی تشخیص بیماری های قلبی با پایتون (Python)
- پروژه داده کاوی تشخیص بیماری دیابت با پایتون(Python)
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)
- پیاده سازی الگوریتم ژنتیک در پایتون(Python)
- پروژه داده کاوی تشخیص بیماری های قلبی با نرم افزار وکا (Weka)
- پروژه داده کاوی تشخیص سرطان با پایتون (Python)
- پروژه داده کاوی تشخیص تقلب با نرم افزار رپیدماینر (RapidMiner)
- پروژه داده کاوی بازاریابی مستقیم (Direct marketing) با پایتون (Python)
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پروژه داده کاوی تشخیص تقلب در کارت های اعتباری با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)
- پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
- سفارش انجام پروژه تعادل بار با استفاده از الگوریتم تکامل تفاضلی در محیط رایانش ابری (CloudSim)
- پروژه داده کاوی تشخیص سرطان با نرم افزار کلمنتاین(clementine) یا مدلر(IBM Spss Modeler)
- پروژه داده کاوی امتیاز اعتباری (Credit scoring) با نرم افزار وکا (Weka)
- پروژه آموزشی سیستم های توصیه گر (recommender system) در محیط پایتون
- بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص تقلب در کارت های اعتباری
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)
- بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی فاخته برای داده کاوی سرطان