۳۰ مطلب با کلمه‌ی کلیدی «پیاده سازی مقاله» ثبت شده است

پیاده سازی مقاله: یک رویکرد هوشمند برای مساله زمانبندی کار در گرید محاسباتی

پیاده سازی مقاله: یک رویکرد هوشمند برای مساله زمانبندی کار در گرید محاسباتی

چکیده:

مساله زمان بندی کارها یکی از چالش های مهم در یک گرید محاسباتی است. هدف مساله زمانبندی گرید، انتساب بهینه کارها به منابع است. با توجه به پویایی محیط گرید، ناهمگونی و خود مختار بودن گره های گرید و پیچیدگی کارهایکاربران ، کارایی محیط گرید به شدت به تکنیک های زمانبندی که دنبال می کند وابسته است. بنابراین ارایه یک تکنیک کارآمد، منطبق و کم هزینه برای زمانبندی کارها در محیط گرید بسیار مهم است .اکثر روش های زمان بندی متمرکز یانیمه متمرکز می باشند در نتیجه این روش ها با شرایط محیطی منطبق نمی باشند.در این اثر یک الگوریتم زمان بندی کار پویا مبتنی بر آتاماتای یادگیر برای حل مساله زمانبندی کار در گرید محاسباتی ارایه شده است. در روش پیشنهادی، با استفاده از الگوهای یادگیر ابتدا اطلاعاتی در مورد پارامترهای محیطی گرید همچون انواع کاربران، نرخ ترافیک کاربرانمختلف، توان محاسباتی گره های مختلف گرید و غیره توسط الگوریتم گردآوری می شود. سپس بر اساس اطلاعات بدست آمده سعی می شود تا فرایند تخصیص کار و زمانبندی کار متناسب با بار کاری کاربران مختلف باشد. کارایی الگوریتمپیشنهادی، با استفاده از نرم افزار متلب، تحت سه اندازه مختلف گرید، مورد آزمایش قرار گرفت. نتایج بدست آمده با دوروش مختلف زمان بندی کار مقایسه شده است. نتایج عددی برتری الگوریتم پیشنهادی را نسبت به دو روش موجود از نظر حداکثر زمان اجرای تمام کار های ارسالی، مجموع زمان تکمیل شدن تمام کارها و تعادل بار کاری قرار داده شده روی گره های گرید، تایید می کنند.
  • شریف پژوه

پیاده سازی مقاله: تاثیر انتخاب اپراتور برNSGA_III در بهینه سازی بیش هدفه- چند هدفه و تک هدفه

پیاده سازی مقاله: تاثیر انتخاب اپراتور برNSGA_III در بهینه سازی بیش هدفه- چند هدفه و تک هدفه

چکیده:

الگوریتم مناسب ژنتیک طبقه بندی شده (NSGA_III) یک الگوریتم بهینه چندگانه می باشد که با استفاده از چند جهت مرجع از پیشتعریف شده و در عین حال سازگار به حفظ تنوع در میان راه حل های آن است. خصوصا طراحی حل مسایل چندگانه ای که دارای چهاریا بیشتر تابع هدف است. محدودیتی وجود دارد که مانع از استفاده NSGA_III به مسایل بهینه سازی تک هدفه که در آن تنها یکجهت مرجع وجود دارد شده است که برای این منظور یک الگوریتم یکپارچه U_ NSGA_III به تازگی طراحی شده تا مطالعه اینمقاله را به عهده گیرد.U_ NSGA_III قابلیت تطبیق دهی خودکار به ابعاد شکل را دارد.به هر حال طراحان در این مقاله امکان چشم پوشی از محدودهNSGA_III و استفاده از ارزیابی عملکرد چند گانه برای حل مسایل چند گانه ، ضربه دری و تکی را داریم.در اینجا عملکرد ارزیابی روی یک سری مسایل چند گانه ،ضربه دری ، تکی ثابت و غیر ثابت به این منظورانجام می شوند که ضعفو عیب NSGA_III چند رشته ای در مقایسه با U_ NSGA_III بررسی شوند نقطه قوت NSGA_III در هر نوع مساله نیز شرحداده شده است این مطاله یک ارزیابی مقایسه ای در مورد روند کاری NSGA_III اصلی فراهم می کند.
  • شریف پژوه

پیاده سازی مقاله: الگوریتم ژنتیک گروهی مبتنی بر الگوریتم پرندگان

پیاده سازی مقاله: الگوریتم ژنتیک گروهی مبتنی بر الگوریتم پرندگان

چکیده:

هدف از این مقاله و ارزیابی یک الگوریتم بهینه سازی جدید است. الگوریتم جدید، الگوریتم ژنتیک پرندگان نام دارد . این الگوریتم نوعی ترکیبی از الگوریتم ژنتیک و الگوریتم بهینهسازی ذرات است این مقاله به نقاط قوت و ضعف دو الگوریتم می پردازد. سپس چگونگی ترکیب شدن ویژگی های هر دو را شرح داده و جزئیات الگوریتم را بیان می کند. هر سه الگوریتم با استفاده از هشت مسئله بهینه سازی استاندارد ادبیات موضوع با هم مقایسه می شوند. نشان داده می شود که الگوریتم ژنتیک پرندگان کارایی برتری در 75% حالات تست شده دارد در 25% بقیه حالات کارایی بیشتری نسبت به الگوریتم ژنتیک یا بهینه سازی ذرات داشته و در هیچ حالتی بدتر از دو الگوریتم دیگر نیست. بهبودهای ممکن در آینده نیز به طور خلاصه بررسی می شوند.
  • شریف پژوه

پیاده سازی مقاله: الگوریتم های زمانبندی کارها در محیط گرید

پیاده سازی مقاله: الگوریتم های زمانبندی کارها در محیط گرید

چکیده:

گرید محاسباتی دارای مقیاسی بزرگ، متشکل از مجموعه سیستم های مستقل ناهمگن است که از لحاظ جغرافیایی توزیع شده و با تاخیر زمانی کم و پهنای باند بالا به یکدیگر متصل شده اند. به اشتراک گذاری کارها، کاربرد اصلی گریدها است. مدیریت منابع گرید قابلیت هایی برای کشف و انتشار منابع فراهم و همچنین برنامه ریزی، ارسال و نظارت بر کارها را انجام می دهد. با این حال، مدیریت منابعی که از لحاظ جغرافیایی توزیع شده و تحت مالکیت سازمان های مختلف هستند، دارای هزینه ها و محدودیت های بسیاری است. با توجه به ماهیت مقاوم به درمان مشکل زمانبندی و اهمیت آن در محاسبات گرید، نیاز به کشف راه حل های دیگری برای توسعه الگوریتم های اکتشافی جهت استفاده در این مشکل است. در این راستا الگوریتم ها و تکنیک هایی بسیاری ارائه شده است که در این مقاله به بررسی و مقایسه عملکرد تعدادی از آن ها پرداخته ایم.
  • شریف پژوه

پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی

پیاده سازی مقاله: کاربرد الگوریتم رقابت استعماری در پیش بینی ورشکستگی

چکیده:

هدف بررسی کارایی الگوریتم رقابت استعماری در پیش بینی ورشکستگی بوده، در این مطالعه با بررسی برخی از داده های مرتبط با ورشکستگی، صورت های مالی شرکت های موجود در بازار بورس ایران و با مشاهده تجربی و تجارب پژوهش های گذشته به انتخاب متغیرهای اصلی در پیش بینی ورشکستگی پرداخته شده، سپس به دلیل انطباق بیشتر مدل با واقعیت، با توجه به ارتباط داده های متغیرهای اصلی با دیگر داده های در دسترس، به انتخاب متغیرهای فرعی پرداخته شده است. 6 متغیر اصلی و 18 متغیر فرعی اولیه، برای شرکت های نمونه ورشکسته با سه معیار ورشکستگی و برای شکرتهای نمونه غیر وزشکسته با انتخابی تصادفی، استخراج گشته است. معیارهای تعیین ورشکستگی با توجه با نگاهی فرآیندی برگزیده شده اند، معیار اول ماده 141 قانون تجارت و معیار دوم، معیار نسبت بدهی به دارایی ها می باشد، معیار سوم که در آن نسبت جمع حقوق صاحبان سهام به ارزش اسمی سهام، معیار تشخیص ورشکستگی است برای پوشش انتقادهای وارده به این معیار لحاظ گردیده است، به این صورت که اگر این نسبت کمتر از یک باشد شرکت ورشکسته تلقی می گردد. بازه زمانی انتخاب نمونه سال 1389 بوده و بازه رمانی استخراج داده ها سال های 1387 تا 1389 بوده است. تجزیه و تحلیل آماری روی این متغیرها منجر به حذف بعضی از آنها در معیارهای مختلف گشته و مدلی با بهره گیری از الگوریتم رقابت استعماری، متغیرهای اصلی و متغیرهای فرعی برای هر یک از سه معیار، طراحی و ارائه شده است که به نقطه آغازین وابسته نیست از این رو دسته بندی اولیه متغیرهای اصلی و فرعی تاثیری رخروجی مدل ندارد. مدل با استفاده از اطلاعات شرکت های ورشکسته و شرکت های غیر ورشکسته ارزیای شده و نتایج نشان میدهد که ورشکستگی را می توان با دقت نسبتا بالایی با مدل حاصل پیش بینی نمود.
  • شریف پژوه

پیاده سازی مقاله: بهبود الگوریتم بهینه سازی ازدحام ذرات چندهدفه به وسیله عملگر جهش

پیاده سازی مقاله: بهبود الگوریتم بهینه سازی ازدحام ذرات چندهدفه به وسیله عملگر جهش

چکیده:

در این مقاله ما به تشریح الگوریتم بهینه سازی ازدحام ذرات با رویکرد چند هدفه می پردازیم، همچنین عملگر جهش را در آن به کار بردیم تا ظرفیت جستجوی فضای هدف را افزایش دهیم چون این الگوریتم در معرض خطر افتادن در بهینه محلی می باشد. برنامه پیاده سازی شده را به تعداد ده مرتبه با دو نوع تابع هدف MOP 2 ,MOP 4 اجرا نموده و حالات مختلف را درنظر گرفته تا نتایج را با یکدیگر مقایسه نمائیم. نتایج بدست آمده از آزمایشات بیانگراین موضوع می باشد که اگر از عملگر جهش بخوبی استفاده شود نتایج بهبود یافته و این امر به این دلیل تحقق پیدا می کند که هر زمان ذره ای در بهینه محلی قرار بگیرد با اعمال کردن عملگر جهش از آن خارج شده و باعث می شود تا به کار خود ادامه دهد.

  • شریف پژوه

پیاده سازی مقاله: تشخیص سایت های فیشینگ با استفاده از الگوریتم جنگل تصادفی

پیاده سازی مقاله: تشخیص سایت های فیشینگ با استفاده از الگوریتم جنگل تصادفی

چکیده:

فیشینگ یک نوع حمله مهندسی اجتماعی است که هدف آن بدست آوردن اطلاعات شخصی افراد جامعه و حساب های بانکی و... از طریق وب سایت های جعلی می باشد. برای تشخیص میزان دقت حملات سایت های فیشینگ یک مجموعه داده را که شامل 9999 نمونه می باشد و 30 ویژگی در آن بررسی شده است را استفاده کردیم. برای اینکه میزان دقت تشخیص سایت های فیشینگ را بدست بیاوریم از الگوریتم ها مختلف داده کاوی استفاده کردیم. بهترین الگوریتمی که میزان دقت تشخیص بالایی نسبت به بقیه الگوریتم ها داشت الگوریتم جنگل تصادفی بود که توانست میزان دقت تشخیص سایت های فیشینگ را 97.8398 افزایش دهد.
  • شریف پژوه

پیاده سازی مقاله: عقیده کاوی مبتنی بر منطق فازی جهت ارائه سیستمهای پیشنهاددهنده

پیاده سازی مقاله: عقیده کاوی مبتنی بر منطق فازی جهت ارائه سیستمهای پیشنهاددهنده

چکیده:

با پیدایش اینترنت و گسترش تجارت الکترونیک امروزه مشتریان میتوانند با مراجعه به پایگاه وب به خریدکالا یا محصول مورد نظر خود بپردازند و عقاید و نظرات خود راجع به کالای مورد نظر خود را بیان کنند.سیستمهای پیشنهاد دهنده با استفاده از عقیده کاوی و بررسی نظرات کاربران پیشنهادات مناسبی را برای خرید محصول مورد علاقهی آنها به مشتریان میدهند. در هر تجارتی از جمله تجارت الکترونیک پیشنهاداتمناسب باعث جلوگیری از سردرگمی مشتریان و افزایش فروش میگردد. در این مقاله سعی در ارائهی روشی داریم که نزدیکی نظرات کاربران را به دست آورده و با استفاده از سیستمهای پیشنهاد دهنده بتوانیم به وسیلهی فازیسازی عقاید و خواستههای کاربران، پیشنهادات دقیقی سازگار با نیازهای آنها ارائه دهیم.

  • شریف پژوه

پیاده سازی مقاله: پیاده سازی سیستم های توصیه گر هتلها با استفاده از اولویت های کاربران در توییتر

پیاده سازی مقاله: پیاده سازی سیستم های توصیه گر هتلها با استفاده از اولویت های کاربران در توییتر

چکیده:

استفاده از سیستم های توصیه گر افزایش فروش در تجارت الکترونیک را اثبات نموده است. هدف سیستم ارائه محصولاتی به کاربر است که متضمن علاقه مندی و آسایش او از محصولات بوده و همچنین در شرکت ها شانس فروش خدمات را ارتقا دهد. یکپارچه سازی تکنیک های مدیریت داده می تواند مسائل مرتبط با ارائه خدمات منطبق با علایق مشتری را مخاطب قرار داده و کیفیت پیشنهاد ها را به طرز چشمگیری بهبود دهد. تحقیقات اخیر بر روی این سیستم ایده استفاده از داده های شبکه اجتماعی به منظور ارتقا سیستم توصیه گر سنتی و پیش بینی بهتر را آشکار می سازد. ما دیدگاه های سیستم های توصیه گر مبتنی بر داده شبکه اجتماعی توییتر را با استفاده از انواع رابط ها، روش های تجزیه وتحلیل محتوا با تکنیک های زبان-شناسی محاسباتی و الگوریتم تاپیک مدلینگ ملت بیان می کنیم. پس از بررسی عمق اهداف، متدولوژی ها این مقاله به علاقه مندان در توسعه سیستم توصیه گر سفر و همچنین تسهیل تحقیقات آینده کمک می نماید.

  • شریف پژوه

پیاه سازی مقاله: عقیده کاوی در نقد کالا با استفاده از شبکه واژگان احساسی

پیاه سازی مقاله: عقیده کاوی در نقد کالا با استفاده از شبکه واژگان احساسی

چکیده:

امروزه با گسترش شبکه جهانی وب، افراد برای خرید کالاهای مورد نیاز خود و یا آگاهی از موضوعات مختلف به وب مراجعه مینمایند.تعداد زیادی از بلاگها و شبکه های اجتماعی وجود دارند که کاربران نظرات خود را در مورد موضوعات مختلف در آنها درج نمودهاند. درنتیجه حجم زیادی از اطلاعات به صورت غیر ساخت یافته وجود دارد که استخراج اطلاعات دلخواه از آنها کار دشواری است. عقیده کاویفرآیند تحلیل نظرات، عقاید و احساسات کاربران است که از نقدها و نظراتی که در مورد یک موضوع خاص نوشتهاند استخراج میشود. در این مقاله، یک سیستم عقیده کاوی که از تکنیکهای پردازش زبان طبیعی و شبکه واژگان احساسی برای عقیدهکاوی در مجموعهای از نقدهای کالا استفاده مینماید، بررسی شده است. در این سیستم ابتدا در مرحله پیش پردازش دادهها با جداسازی کلمات و جملات،برچسبگذاری اجزای سخن و ریشهیابی کلمات، اطلاعات مورد نیاز از نقدها استخراج میشود. در مرحله بعد با استخراج ویژگیهای کالا از نقدها، آن دسته از ویژگیها که از نظر کاربران اهمیت بیشتری دارند مشخص میشوند. ویژگیهای به دست آمده با دقت بالایی مشابه با ویژگیهای واقعی کالا میباشند. سپس طبقه بندی احساسی مجموعه داده بر اساس بار احساسی واژگان موجود در متن صورت میپذیرد.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه

  • شریف پژوه

پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی

پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی

چکیده:

شبکه های عصبی مصنوعی مدل هایی ریاضی می باشند که الهام گرفته از سیستم عصبی و مغز انسان می باشند. در این مقاله سعی محقق بر آن است که به پیش بینی قیمت سهام روز بعد در بورس اوراق بهادار تهران با استفاده از مدل پرسپترون چندلایه از شبکه های عصبی مصنوعی بپردازد؛ و با روش های مختلف سعی شود خطای این پیش بینی را بهبود بخشد. متغیرهای بسیار زیادی در قیمت سهام تاثیر گذار می باشند که در این میان سهم شاخص های اقتصادی عمده را می توان بسـیار بالا دانست، که نرخ ارز (شـامل نرخ دلار آمریـکا و یورو)، قـیمت طـلا و قیمت نفت از آن جمله می باشند. همچنین شاخص کل نیز به عنوان نماینده ای از کل شرکت های پذیرفته شده در بورس اوراق بهـادار تهـران در نظر گرفته می شود، که این شاخص ها به عـنوان متغـیرهای مستقل جهت پیش بینی قیمت سهام مورد استفاده قرار گرفته اند.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه

  • شریف پژوه

پیاده سازی مقاله: استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

پیاده سازی مقاله: استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

چکیده:

با توجه به محدودیت منابع ، تخصیص بهینه منابع یک ضرورت به حساب می اید. در تحقیق حاضر به مدل سازی رفتار اعتباری مشتریان با استفاده از شبکه های عصبی جهت تخصیص بهینه منابع و ارتقاء کیفیت خدمات تسهیلات بانک های کشور پرداخته شده است در ادامه، مشتریان تسهیلات اعتباری ساخت مسکن در شهر تهران به سه دسته خوش حساب، سررسید گذشته و بدحساب تقسیم شده، متغیرهای تاثیرگذار بر رفتار اعتباری انهخا شناسایی گردی. سپس داده های تاریخی متناظر ، جمع اوری و به دو مجموعه اموزشی و تست، تقسیم گردید. در مرحله بعد، پس از طراحی مدل های رتبه بندی اعتباری، این مدل ها با داده های آموزشی ، آموزش داده شدند. در نهایت با مجموعه داده های تست، مورد ازمون قرار گرفتند. نتایج بدست امده حاکی از آن است که رفتار اعتباری مشتریان با استفاده از مدل های رتبه بندی شبکه های عصبی قابل پیش بینی است. همچنین مدل آنالیز ممیزی با همان داده های تاریخی اجرا گردید. مقایسه بین قدرت تفکیک مدل های شبکه عصبی و مدل آنالیز ممیزی ، نشان می دهدکه مدل های رتبه بندی اعتباری شبکه های عصبی نسبت به مدل آنالیز ممیزی از قدرت تفکیک یا دقت پیش بینی بیشتری برخوردار هستند.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه

  • شریف پژوه

پیاده سازی مفاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی

پیاده سازی مقاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی

چکیده:

مفهوم کنترل هوشمندانه فرآیند جستجو در الگوریتم جستجوی گرانشی (GSA) برای توسعه یک روش داده کاوی جدید معرفی می شود. روش پیشنهاد شده، کاوشگر فازی (FGSA-miner) GSA نامیده می شود. در ابتدا یک کنترل کننده فازی طراحی می شود تا ضریب گرانش و تعداد اجرام موثر را به عنوان دو پارامتر اساسی که نقش اصلی را در فرآیند جستجوی GSA بر عهده دارند، بطور وفقی کنترل کند. سپس، الگوریتم بهبود یافته GSA (با نامFuzzy-GSA ) برای ساختن یک الگوریتم داده کاوی جدید برای کشف قواعد در طبقه بندی بر مبنای مجموعه ای از داده های مرجع به خدمت گرفته می شود. نتایج آزمایشهای زیادی روی مسائل عملی و محک بازشناسی الگو شامل مسائل غیرخطی، دسته های با مرزهای همپوشان و ابعاد ویژگی مختلف فراهم شده است تا توانمندی روش پیشنهادی را نشان دهد. نتایج مقایسه ای بیانگر آن است که کارایی FGSA-miner پیشنهادی با الگوریتم های CN2 (یک روش داده کاوی سنتی) و روشهای مشابهی که بر پایه سایر الگوریتم های هوش جمعی (بهینه ساز جمعیت مورچگان و بهینه ساز گروه ذرات) و الگوریتم تکاملی (الگوریتم وراثتی) هستند قابل قیاس و در بعضی موارد از آنها بهتر است.

  • شریف پژوه

پیاده سازی مقاله: تشخیص جرایم سایبری در ارتباطات برخط با رویکرد داده کاوی

پیاده سازی مقاله: تشخیص جرایم سایبری در ارتباطات برخط با رویکرد داده کاوی

چکیده:

در سال­های اخیر سایت­های شبکه های اجتماعی برخط محبوبیت چشمگیری را به دست آورده­اند. جرایم سایبری از رسانه­های اجتماعی به عنوان پلتفرم جدید در پذیرش انواع مختلف جرایم رایانه­­ای مانند فیشینگ، اسپمینگ، اشاعه بدافزار و اذیت و آزار سایبری استفاده می­کنند. در این تحقیق، با کمک استفاده از اطلاعات مفید در پیام ها، عملکرد تشخیص آزار و اذیت­های سایبری را بهبود داده می شود. انتخاب بهترین مشخصه­ها با قدرت جداکنندگی بالا بین توئیت­های مزاحمت­های سایبری و غیر مزاحمت های سایبری یک فعالیت پیچیده است که نیازمند تلاش قابل ملاحظه­ای در ساخت مدل یادگیری ماشین می­باشد. در این راستا عملکرد پنج روش طبقه بندی بیزساده، ماشین بردار پشتیبان، درخت تصمیم، k- نزدیک­ترین همسایگی و شبکه عصبی را تحت پنج تنظیم مختلف به منظور انتخاب بهترین تنظیم برای مشخصه های پیشنهادی مقایسه شده است و با استفاده از الگوریتم های خفاش و ژنتیک و ازدحام ذرات پارامترهای C و سیگما را بهبود داده شده است و مقایسه­ای بین پنج روش طبقه بندی با پارامترهای پیش فرض و پارامترهایی که با الگوریتم­­های بهینه ساز به دست آورده شده و مشخص شده است که الگوریتم خفاش از بین الگوریتم های دیگر بهینه­ساز بهترین عملکرد را داشته است. با توجه به پژوهشی که انجام شده بیشترین دقت را با مدل SVM به 56/86 و بیشترین صحت را به 14/87 بوده است.

  • شریف پژوه

ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم ماشین بردار پشتیبان، جنگل و درخت تصمیم

پیاده سازی مقاله: ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم های ماشین بردار پشتیبان، جنگل و درخت تصمیم

چکیده:

امروزه بیماری مزمن کلیه یکی از مهمترین بیماریهای رایج بین افراد جامعه بخصوص بزرگسالان است. این بیماری در واقع نوعی مرگ خاموش محسوب میشود زیرا این بیماری از دسته بیماریهای مزمن است و یکباره فرد به این بیماری مبتلا نمی شود و ممکن است، سالهای سال مبتلا به این بیماری باشد بدون اینکه کوچکترین علائمی از خود نشان دهد و زمانی علائم خود را بروز دهد که به بدترین وضعیت بیماری برسد و منجر به خطر افتادن جان بیمار یا صرف هزینه های بسیاری برای دیالیز یا پیوند کلیه های بیمار شود. هدف این پژوهش ارائه مدل هوشمند برای کمک به شناسایی و تشخیص بیماری کلیه با استفاده از روشها و الگوریتم های یادگیری ماشین و داده کاوی برروی مجموعه داده کلیه دانشگاه کلیولند کالیفرنیا است. در این تحقیق برای ساخت مدل پیشبینی در ابتدا مجموعه داده اصلی را به دو مجموعه داده آموزش/ ارزیابی و مجموعه داده آزمایش تقسیم کردیم. به کمک مجموعه داده آموزش/ارزیابی با استفاده از روش اعتبار سنجی متقابل fold-10 و الگوریتم های درخت تصمیم، جنگل تصادفی و ماشین بردار پشتیبان مدل را ایجاد کرده و دقت نهایی مدل در این پژوهش را به کمک مجموعه داده آزمایش ارزیابی کرده ایم. در انتها نتایج بدست آمده با الگوریتم های جنگل تصادفی و ماشین بردار پشتیبان با دقت های 89,98 %بالاترین دقت را دراین پژوهش حاصل کرده است.

  • شریف پژوه

پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

چکیده:

استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.

  • شریف پژوه

پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی

پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی

چکیده:

بدافزار به هرگونه برنامه کامپیوتری اطلاق می شود که دارای اهداف مخرب باشد. این برنامه ها مهمترین تهدید برای سیستم هایکامپیوتری به حساب می آیند. تنوع این بدافزارها باعث محدود شدن راه کارهای مقابله با آنها شده است، به گونه ای که روزانه میلیون ها سیستمکامپیوتری بر اثر آسیب های ناشی از انواع ویروس ها، تروجان ها و کرم های اینترنتی و غیره آلوده می شوند. در سال های اخیر یکی از مهمترینچالش های امنیت اطلاعات و شبکه های ارتباطی، افزایش روز افزون انواع بدافزارها و به دنبال آن یافتن راه های مناسب جهت حفاظت سیستم ها درمقابل آنهاست که از مهمترین دغدغه های برنامه نویسان و متخصصین امنیت اطلاعات، شناخت به موقع و یافتن راه های مقابله با اثرات مخرباینگونه بدافزارها می باشد. در این راستا طی سالهای اخیر استفاده از الگوریتم های داده کاوی و هوش مصنوعی بعنوان یکی از روشهای نوظهور وامیدوار کننده توانسته است کاربرد بسیاری جهت شناسایی و تشخیص انواع بدافزارها داشته باشد. لذا در این تحقیق سعی کردیم با استفاده ازشبکه عصبی مصنوعی و الگوریتم ازدحام ذرات، فایل های آلوده به بدافزار را تشخیص دهیم. پیاده سازی روش پیشنهادی نشان میدهد که توانستهاست فایل های آلوده به بدافزار را با استفاده از مجموعه داده مربوط به فایل های سالم و آلوده به بدافزار با دقت 0.91 درصد تشخیص دهد که نشان ازعملکرد بالای آن دارد.

  • شریف پژوه

پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی

پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی

چکیده:

با گسترش روز افزون استفاده از سامانه های نوین بانکی و افزایش تعداد عملیات بانکی، سوء استفاده های مالی و تقلب در این عملیات بیشاز پیش گسترش پیدا کرده است. اینگونه سوء استفاده ها علاوه بر اتلاف منابع مالی، باعث کاهش اعتماد مشتریان به استفاده از سامانه های نوینبانکی و در نتیجه کاهش اثر بخشی این سامانه ها در مدیریت بهینه ی سرمایه و تراکنش های مالی می شود. در این پژوهش جهت کشف تقلببانکی بر روی مجموعه داده های بانکی ، از ترکیب الگوریتم های داده کاوی استفاده شده است. برای انجام کار در ابتدا، خوشه بندی رکوردهای دادهای موجود در مجموعه داده ها صورت گرفته است و به دنبال آن، تشخیص تراکنش های بانکی شبهه دار، در زمان انجام تراکنش تشخیص داده میشود. نتایج حاصل نشان می دهد که روش پیشنهادی دارای میزان دقت بالاتری نسبت به الگوریتم های داده کاوی دیگر همچون درخت تصمیم J48و جنگلهای تصادفی دارد.

  • شریف پژوه

پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه

پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه

چکیده:

 با توجه به گسترش و توسعه سریع شبکه های کامپیوتری، نفوذ و حملات به آن ها افزایش یافته و به طرق و شیوه های مختلف انجام می شود. هدف از تشخیص نفوذ برای شناسایی استفاده غیرمجاز، سوء استفاده، و آسیب پذیری های ایجاد شده توسط کاربران داخلی و مهاجمان خارجی است. در این مقاله قصد داریم که سیستم تشخیص نفوذ از نوع سوء استفاده مبتنی بر سیستم فازی و الگوریتم جستجوی ممنوعه را ارائه کنیم. در ابتدا دانش موردنیاز خود را از سیستم فازی که مجموعه ای از قوانین if-then است، را کسب کرده و سپس الگوریتم جستجوی ممنوعه برای بهینه کردن مجموعه قوانین به دست آمده را بر روی مجموعه داده NSL-KDD پیاده و اجرا نمودیم. نتایج به دست آمده در مقایسه با نتایج موجود حاکی از آن است که روش پیشنهادی از صحت و کارایی مناسبی برخوردار است.

  • شریف پژوه

پیاده سازی مقاله: روش جدید تشخیص فیشینگ مبتنی بر ترکیب الگوریتم پنگوئن و داده کاوی

پیاده سازی مقاله: روش جدید تشخیص فیشینگ مبتنی بر ترکیب الگوریتم پنگوئن و داده کاوی

چکیده:

با دسترسی آسان به اینترنت، بسیاری از کسب و کارها فعالیت های خود را در شبکه های وابسته به اینترنت انجام می دهند. اما هموره مخاطرات امنیتی از جمله حملات فیشینگ این کسب و کارها را تهدید می کنند. تعدد ویژگی های صفحات وب، منجر به استفاده از روش های انتخاب ویژگی و ترکیب آنها با روش های یادیگیر به منظور تشخیص فیشینگ شده است. عملکرد مناسب الگوریتم فرا ابتکاری پنگوئن در یافتن پاسخ بهینه، ایده اصلی این مقاله جهت بررسی نحوه عملکرد این الگوریتم در مسئله تشخیص فیشینگ بوده است. بنابراین از تریکب الگوریتم پنگوئن در فاز انتخاب ویژگی با شبکه عصبی مصنوعی در فاز تشخیص فیشینگ استفاده شده است. برای آموزش و ارزیایی روش پینشهادی از یک مجموعه داده با 11055 نمونه وبسایت های فیشینگ و عادی استفاده شده است. نتایج پیاده سازی در محیط متلب نشان می دهد با افزایش اندازه جمعیت و تعداد تکرار در الگوریتم بهینه سازی پنگوئن، مقدار متوسط تابع انتخاب ویژگی 69.57%، و شاخص RMSE حدود 24.56% کاهش یافته است. همچنین روش پیشنهادی در مقایسه با شبکه عصبی مصنوعی چند لایه حدود 29.16% خطای کمتر در تشخیص فیشینگ را نشان می دهد.

  • شریف پژوه
موضوعات