۳ مطلب در آبان ۱۴۰۰ ثبت شده است

پیاده سازی پایان نامه: پیش بینی مصرف انرژی ساختمان با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی مصرف انرژی ساختمان با استفاده از تکنیک های داده کاوی

پیش‌بینی هوشمند مصرف انرژی به‌ویژه برای ساختمان‌ها مسئله ی مهمی است، زیرا مصرف انرژی ساختمان‌ها روز به روز در حال افزایش است و تقریباً به 40 درصد مصرف انرژی اولیه در کشورهای توسعه‌یافته می‌رسد. در سال های اخیر مصرف انرژی به دلیل رشد جمعیت به تدریج افزایش یافته است. افزایش مصرف انرژی ساختمان ها، اجباری را در کشورهای مختلف برای مدیریت و کاهش هر چه بیشتر مصرف انرژی به منظور ارتقای بهره وری انرژی ایجاد می کند.

در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای پیش بینی مصرف انرژی ساختمان ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی ریزش مشتری با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی ریزش مشتری با استفاده از تکنیک های داده کاوی

رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای پیش بینی ریزش مشتری ارائه می شود.

  • شریف پژوه

پیاده سازی مقاله: تشخیص بیماری آریتمی قلبی با استفاده از یادگیری عمیق

پیاده سازی مقاله: تشخیص بیماری آریتمی قلبی با استفاده از یادگیری عمیق

چکیده:

بیماریهای قلبی یکی از شایعترین انواع بیماریها است که آمار بسیار بالایی از مرگ و میر را به خوداختصاص میدهد. آریتمی ها ضربانهای غیر طبیعی هستند، که موجب میشوند قلب خیلی سریع تاکی کارد یا خیلی آهسته برادی کارد بزند و پمپاژ غیر مؤثر داشته باشد . تجزیه وتحلیل خودکار الکتروکاردیوگرام برای تشخیص ودرمان بیماران قلبی حیاتی است. روشهای متعددی از قبیل درخت تصمیم، شبکه عصبی، SVM ، بیزین و k نزدیکترین همسایگی برای تحلیل سیگنالهای ECG درتشخیص آریتمی مطرح گردیده اند. در این مقاله ضمن بررسی اجمالی این روش ها، بکارگیری شبکهعصبی عمیق برای تشخیص انواع آریتمی پیشنهاد شده است. در آزمایشات انجام شده روی دادگان آریتمی UCI عملکرد بهتر روش پیشنهادی مشاهده گردید.
  • شریف پژوه
موضوعات