۸ مطلب با موضوع «پروژه الگوریتم فاخته» ثبت شده است

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس:

 

در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم فاخته (Cuckoo algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی فاخته برای داده کاوی سرطان

سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با جستجوی فاخته برای داده کاوی مشکلات ارتوپدی

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و جستجوی فاخته:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم فاخته برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم فاخته:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم فاخته (Cuckoo search)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی فاخته برای داده کاوی بیماری دیابت

سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:

دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین می‌رود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمی‌تواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلول‌های بتا در پانکراس منجر به نقص تولید انسولین می‌شود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلول‌های بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستوی فاخته (Cuckoo search)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته

سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:

فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته می‌شود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم جستجوی فاخته برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم جستجوی فاخته (Cuckoo search) در متلب(MATLAB)

پیاده سازی الگوریتم جستجوی فاخته (Cuckoo search) در متلب(MATLAB):

جستجوی فاخته (Cuckoo search)، جستجوی کوکو یا جستجوی بلبل، الگوریتم بهینه سازی است که زین شی یانگ و سوآش دب در سال ۲۰۰۹ طراحی کردند. این الگوریتم برگرفته از ملزوم کردن تخم انگلی بعضی گونه های بلبل به قرار دادن تخم هایش در آشیانه پرندگان میزان دیگر (از گونه های دیگر) است. بعضی پرندگان میزبان می توانند با فاخته های سربار و مزاحم جنگ و دعوا کنند. برای مثال اگر پرنده میزبان تخم هایی را پیدا کند که متعلق به آن ها نیست، او این تخم های بیگانه را دور می اندازد یا آشیانه ش را به راحتی ترک می کند و جای دیگر آشیانه ی جدیدی می سازد. تعدادی از تخم ها که شباهت بیشتری به تخم های میزبان دارند، شانس بیشتری برای رشد و تبدیل شدن به فاخته خواهند داشت. میزان تخم های رشد کرده مناسب بودن لانه های منطقه را نشان می دهد. برای مطالعه ی جزییات بیشتر در مورد الگوریتم فاخته کلیک کنید. در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم جستجوی فاخته به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه
موضوعات
آخرین مطالب