پیاده سازی مقاله: آموزش شبکه عصبی مصنوعی چند لایه مبتنی بر الگوریتم خفاش اصلاح شده

چکیده:

کارایی شبکه عصبی مصنوعی وابسته به وزن اتصالات بین نرون های آن است که از طریقالگوریتم های آموزش شبکه تعیین می شوند. در این مقاله، ما الگوریتم خفاش اصلاح شده(MBA) را جهت محاسبه مقدار بهینه وزن های شبکه عصبی مصنوعی پیشنهاد می دهیم. الگوریتمخفاش (BA) یک الگوریتم بهینه سازی الهام گرفته از طبیعت است که به علت برقراری تعادلیمناسب بین نرخ همگرایی و قدرت اکتشاف، عملکرد نسبتاً خوبی در حل مسائل بهینه سازی از خودنشان داده است. MBA با تغییراتی در تولید جمعیت اولیه BA بدست می آید که باعث می شودقابلیت جستجوی سراسری در الگوریتم بصورت موثری افزایش یابد. جهت ارزیابی، عملکردالگوریتم BA, MBA و الگوریتم مبتنی بر گرادیان لونبرگ مارکارد را در آموزش شبکه عصبیبا آزمایشاتی بر روی دو مجموعه داده محک شناخته شده خانه بوستون (Boston Housing) وفریدمن (Friedman) بررسی کرده ایم. نتایج نشان داده است که بطور کلی MBA در مقایسه باالگوریتم BA از کارایی بهتری برخوردار می باشد؛ همچنین، دو الگوریتم MBA و BA نسبت بهالگوریتم مبتنی بر گرادیان لونبرگ مارکارد دارای قابلیت تعمیم بهتری در مجموعه داده خانهبوستون می باشند.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه