بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری
سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:
با توجه به اهمیت نقش نرمافزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرمافزار در سالهای اخیر، گسترش زیادی داشته است. خطاهای پیشبینی نشده ی نرمافزاری هزینههای زیادی را مصرف کننده ها، تحمیل میکند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستمهای با کیفیت بالا متمرکز شدهاند. مهم ترین مولفه در سیستم نرمافزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرمافزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
موارد قابل تحویل:
- فایل های شبیه سازی پروژه با نرم افزارهای متلب (Matlab)، پایتون (Python)، زبان R و ... (بسته به درخواست سفارش دهنده)
- مستندات پروژه، شامل توضیحات مربوط به فعالیت های صورت گرفته
- فایل ارائه ی پاورپوینت
- فیلم آموزشی برای آشنایی دقیق تر با فرآیند انجام پروژه
- مجموعه داده ی مورد استفاده در پروژه
برخی از موارد قابل پیاده سازی:
- بررسی تاثیر استفاده از الگوریتم کلونی زنبور عسل بر روی پارامترهای مختلف شبکه عصبی، نظیر، تعداد لایه، وضعیت بایاس، تعداد نورون های هر لایه، تابع فعالیت و ... .
- بررسی تاثیر استفاده از زیرمجموعه ای از داده ها بر روی عملکرد روش تلفیقی شبکه ی عصبی و الگوریتم کلونی زنبور عسل. انتخاب زیرمجموعه مناسب از داده ها به کمک روش کلونی زنبور عسل انجام می شود.
- بررسی تاثیر استفاده از روش های تجمعی نظیر بگینگ(bagging) و بوستینگ(boosting) بر روش تلفیقی شبکه ی عصبی و الگوریتم کلونی زنبور عسل.
- امکان ارائه ی ارزیابی به کمک روش های مختلف، نظیر Cross Validation
- مقایسه با سایر الگوریتم ها، نظیر انواع درخت تصمیم(decision tree) نظیر CHAID، CART، C5.0 و ...، ماشین بردار پشتیبان(support vector machine)، شبکه ی عصبی(Neural Net)، جنگل تصادفی(Random Forest)، استخراج قوانین(Rule Induction)
- روش های مختلف پاکسازی (این بخش با نرم افزارهای جانبی نظیر رپیدماینر، وکا و ... انجام می شود.)
- حذف مقادیر گم شده (missing values)،
- حذف داده های پرت،
- حذف نویز،
- گسسته سازی،
- ایجاد ویژگی های جدید،
- نرمال سازی،
- انتخاب زیرمجموعه ای مناسب از ویژگی ها و...
- روش های مختلف تصویر سازی (این بخش با نرم افزارهای جانبی نظیر رپیدماینر، وکا و ... انجام می شود.)
- نمودارهای هیستوگرام(histogram)
- هیستوگرام رنگی
- پراکندگی(Scatter) و...
- موارد و الگوریتم های قید شده، تنها نمونه ای از فعالیت های قابل تحویل است. انواع مختلف روش های داده کاوی و هوش مصنوعی با توجه به درخواست شما، قابل ارائه است.
مشاوره انجام پایان نامه، پروپزال و مقاله:
در صورتی که به مشاوره برای انجام پایان نامه، پروپزال و مقاله، همچنین آموزش انجام پایان نامه، پروپزال و مقاله در زمینه ی بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری، نیازمندید، این مورد را هنگام درخواست قید نمایید. با توجه به قوانین موجود، فعالیت شریف پژوه محدود به آموزش و مشاوره در این موارد می باشد.
منحصر به فرد بودن پروژه:
در صورتی که نیاز به یک پروژه اختصاصی و منحصر به خودتان در زمینه بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری، داشته باشید، این مورد را هنگام درخواست قید نمایید.