سفارش انجام پروژه تشخیص اسپم با تلفیق روش های درخت تصمیم و الگوریتم تکامل تفاضلی:

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم تکامل تفاضلی (Differential evolution algorithm)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.


موارد قابل تحویل:

  • فایل های شبیه سازی پروژه با نرم افزارهای متلب (Matlab)، پایتون (Python)، زبان R و ... (بسته به درخواست سفارش دهنده)
  • مستندات پروژه، شامل توضیحات مربوط به فعالیت های صورت گرفته
  • فایل ارائه ی پاورپوینت
  • فیلم آموزشی برای آشنایی دقیق تر با فرآیند انجام پروژه
  • مجموعه داده ی مورد استفاده در پروژه


برخی از موارد قابل پیاده سازی:

  • بررسی تاثیر استفاده از الگوریتم تکامل تفاضلی بر روی پارامترهای مختلف درخت تصمیم.
  • بررسی تاثیر استفاده از زیرمجموعه ای از داده ها بر روی عملکرد روش تلفیقی درخت تصمیم و الگوریتم تکامل تفاضلی. انتخاب زیرمجموعه مناسب از داده ها به کمک روش تکامل تفاضلی انجام می شود.
  • بررسی تاثیر استفاده از روش های تجمعی نظیر بگینگ(bagging) و بوستینگ(boosting) بر روش تلفیقی درخت تصمیم و الگوریتم تکامل تفاضلی.
  • امکان ارائه ی ارزیابی به کمک روش های مختلف، نظیر Cross Validation
  • مقایسه با سایر الگوریتم ها، نظیر انواع درخت تصمیم(decision tree) نظیر CHAID، CART، C5.0 و ...، ماشین بردار پشتیبان(support vector machine)، شبکه ی عصبی(Neural Net)، جنگل تصادفی(Random Forest)، استخراج قوانین(Rule Induction) 

  • روش های مختلف پاکسازی (این بخش با نرم افزارهای جانبی نظیر رپیدماینر، وکا و ... انجام می شود.)
    • حذف مقادیر گم شده (missing values)، 
    • حذف داده های پرت، 
    • حذف نویز، 
    • گسسته سازی، 
    • ایجاد ویژگی های جدید، 
    • نرمال سازی، 
    • انتخاب زیرمجموعه ای مناسب از ویژگی ها و...
  • روش های مختلف تصویر سازی (این بخش با نرم افزارهای جانبی نظیر رپیدماینر، وکا و ... انجام می شود.)
    • نمودارهای هیستوگرام(histogram) 
    • هیستوگرام رنگی
    • پراکندگی(Scatter) و...
  • موارد و الگوریتم های قید شده، تنها نمونه ای از فعالیت های قابل تحویل است. انواع مختلف روش های داده کاوی و هوش مصنوعی با توجه به درخواست شما، قابل ارائه است.


مشاوره انجام پایان نامه، پروپزال و مقاله:

در صورتی که به مشاوره برای انجام پایان نامه، پروپزال و مقاله، همچنین آموزش انجام پایان نامه، پروپزال و مقاله در زمینه ی بهینه سازی درخت تصمیم با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص اسپم، نیازمندید، این مورد را هنگام درخواست قید نمایید. با توجه به قوانین موجود، فعالیت شریف پژوه محدود به آموزش و مشاوره در این موارد می باشد.


منحصر به فرد بودن پروژه:

در صورتی که نیاز به یک پروژه اختصاصی و منحصر به خودتان در زمینه بهینه سازی درخت تصمیم با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص اسپم، داشته باشید، این مورد را هنگام درخواست قید نمایید.