سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ژنتیک برای شناسایی اعداد دست نویس:
در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم ژنتیک(Genetic algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری های قلبی:
بیماری قلبی-عروقی: یا بیماری قلبی دستهای از بیماریها است که در قلب یا رگها (سرخرگها، مویرگها و سیاهرگها) رخ میدهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماریهای قلبی، بیماریهای عروقی مغز و کلیه و بیماریهای شریانی میشود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.
در این پروژه، با استفاده از نرم افزار رپیدماینر (RapidMiner)، مجموعه داده های مربوط به بیماری های قلبی مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از پایتون (Python)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:
سرطان نامی است که به مجموعهٔ بیماریهایی اطلاق میشود که از تکثیر مهارنشده سلولها پدید میآیند. سلولهای سرطانی از سازوکارهای عادی تقسیم و رشد سلولها جدا میافتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلولها میشوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد میتوان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعههایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های ماشین بردار پشتیبان و الگوریتم کلونی زنبور عسل:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های ماشین بردار پشتیبان (support vector machine) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:
امتیاز اعتباری یک عبارت عددی است که با تکنیکهای آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقهای فرد یا شرکت هستند محاسبه میشود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیمگیری بر این مبنا، در مقایسه با روشهای سلیقهای و گزارشهای متنی، به مراتب قابل اطمینانتر و منصفانهتر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:
بیماری قلبی-عروقی: یا بیماری قلبی دستهای از بیماریها است که در قلب یا رگها (سرخرگها، مویرگها و سیاهرگها) رخ میدهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماریهای قلبی، بیماریهای عروقی مغز و کلیه و بیماریهای شریانی میشود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی (harmony search algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی(Harmony search algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی بازاریابی مستقیم به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:
بازاریابی مستقیم (Direct Marketing) یعنی استفاده از کانال های مستقیم مصرف کننده، برای رساندن و تحویل کالاها و خدمات به مشتریان بدون استفاده از واسطه های بازاریابی. این کانال ها شامل پست مستقیم، کاتالوگ ها، بازاریابی تلفنی، تلویزیون تعاملی، دکه ها، وب سایت ها، و تجهیزات همراه می شوند. بازاریاب های مستقیم به دنبال یک پاسخ قابل اندازه گیری، مثل سفارش مشتری هستند. برای مطالعه جزییات بیشتر در مورد بازاریابی مستقیم کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به بازاریابی مستقیم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری کلیوی به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:
کلیه یکی از اندامهای درونی بدن انسان و برخی دیگر از جانداران است. کار کلیه تصفیه خون از مواد زائد و دفع متابولیتهای بدن میباشد جالب است بدانید انسان میتواند با ۲۰٪ کلیههایش زندگی نسبتاً سالمی داشته باشد. کلیه نقش مهمی در دفع مواد زائد و تعادل آب و الکترولیتها در بدن دارد. نارسایی حاد کلیوی در اثر تخریب کلیهها پدید میآید و با فقدان سریع عملکرد کلیوی مشخص میشود. این بیماری منجر به ناهنجاریهای الکترولیتی و بر پایه اسید و احتباس فراوردههای زاید نیتروژنی از قبیل اوره و کراتینین میگردد. برای مطالعه جزییات بیشتر در مورد کلیه و بیماری های آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بیماری کلیوی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه تشخیص اسپم با تلفیق روش های درخت تصمیم و الگوریتم تکامل تفاضلی:
به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروههای خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم میگویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار میگرفت و همچنین ناقص بودن قوانین بینالمللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال میشوند. امروزه اسپمها بهطور عمده با هدفهای تجاری منتشر میشوند ولی اسپمهای غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روشهای متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم تکامل تفاضلی (Differential evolution algorithm)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم ممتیک برای شناسایی اعداد دست نویس:
در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم ممتیک (Memetic algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی پیش بینی نرخ جرم و جنایت با نرم افزار کلمنتاین یا مدلر:
با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.
در این پروژه، با استفاده از نرم افزار کلمنتاین(clementine) یا مدلر(IBM Spss Modeler)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه بهبود یادگیری عمیق با سیستم ایمنی مصنوعی برای شناسایی اعداد دست نویس:
در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و سیستم ایمنی مصنوعی (artificial immune system)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات(particle swarm optimization)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تفاضلی(Differential algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش پروژه راهکارهای مبتنی بر یادگیری عمیق در سیستم های توصیه گر:
سیستم توصیهگر یا سامانه پیشنهادگر با تحلیل رفتار کاربر خود، اقدام به پیشنهاد مناسبترین اقلام (داده، اطلاعات، کالا و…)مینماید. این سیستم رویکردی است که برای مواجهه با مشکلات ناشی از حجم فراوان و رو به رشد اطلاعات ارائه شدهاست و به کاربر خود کمک میکند تا در میان حجم عظیم اطلاعات سریعتر به هدف خود نزدیک شوند. برای مطالعه ی بیشتر کلیک کنید.
یادگیری عمیق، یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. برای مطالعه بیشتر کلیک کنید.
در این پروژه، با استفاده از محیط برنامه نویسی پایتون، راهکارهایی مبتنی بر روش یادگیر عمیق در سیستم های توصیه گر ارائه می شود.
سفارش پروژه تشخیص ناهنجاری در شبکه های اجتماعی مبتنی بر گراف در محیط پایتون:
تشخیص ناهنجاری به تشخیص الگوهای موجود در یک مجموعه اطلاعات داده شده، که با رفتار بهنجار (نرمال) از پیش مقررشده، مطابقت ندارد، اشاره دارد؛ بنابراین الگوهای تشخیص داده شده، ناهنجاریها نامیده میشوند و اغلب به اطلاعات حیاتی و کارآمد، در چندین حوزهٔ کاربرد، ترجمه میشوند. همچنین ناهنجاریها به عنوان دورافتادگی، تغییر، انحراف، تعجب، نابجایی، صفات عجیب، نفوذ و غیره ارجاع میشوند. برای مطالعه ی بیشتر کلیک کنید.
در شبکه های اجتماعی، با توجه ساختار به خصوص داده های آنها، فرآیند تشخیص ناهنجاری تا حدی پیچیده تر از مجموعه داده های متداول می باشد.در این پروژه، با استفاده از محیط برنامه نویسی پایتون، فرآیند کامل پیاده سازی تشخیص ناهنجاری در شبکه های اجتماعی مبتنی بر گراف ارائه می شود.
سفارش پروژه آموزشی یادگیری انتقالی (Transfer Learning) در محیط پایتون:
یادگیری انتقال (Transfer learning) بر نگهداری دانش بدست آمده ضمن حل یک مساله و اعمال آن بر مسائل متفاوت ولی مرتبط دیگر متمرکز شده است ، به عبارتی به معنای استفاده از یک مدل از پیش آموزش دیده در یک کاربرد جدید است. امروزه در یادگیری عمیق از فرآیند یادگیری انتقالی به طور گسترده استفاده می شود، زیرا امکان آموزش شبکههای عصبی عمیق را با دادههای نسبتا کمی فراهم میکند.
در این پروژه، با استفاده از محیط برنامه نویسی پایتون و کتابخانه Keras، فرآیند کامل پیاده سازی یادگیری انتقالی آموزش داده می شود.
سفارش پروژه آموزشی سیستم های توصیه گر (recommender systems) در محیط پایتون:
سیستم توصیهگر یا سامانه پیشنهادگر با تحلیل رفتار کاربر خود، اقدام به پیشنهاد مناسبترین اقلام (داده، اطلاعات، کالا و…)مینماید. این سیستم رویکردی است که برای مواجهه با مشکلات ناشی از حجم فراوان و رو به رشد اطلاعات ارائه شدهاست و به کاربر خود کمک میکند تا در میان حجم عظیم اطلاعات سریعتر به هدف خود نزدیک شوند. برای مطالعه ی بیشتر کلیک کنید.
در این پروژه، با استفاده از محیط برنامه نویسی پایتون، فرآیند کامل پیاده سازی سیستم های توصیه گر آموزش داده می شود.