۳۸۴ مطلب با موضوع «هوش مصنوعی» ثبت شده است

پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی

پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی

چکیده:

بدافزار به هرگونه برنامه کامپیوتری اطلاق می شود که دارای اهداف مخرب باشد. این برنامه ها مهمترین تهدید برای سیستم هایکامپیوتری به حساب می آیند. تنوع این بدافزارها باعث محدود شدن راه کارهای مقابله با آنها شده است، به گونه ای که روزانه میلیون ها سیستمکامپیوتری بر اثر آسیب های ناشی از انواع ویروس ها، تروجان ها و کرم های اینترنتی و غیره آلوده می شوند. در سال های اخیر یکی از مهمترینچالش های امنیت اطلاعات و شبکه های ارتباطی، افزایش روز افزون انواع بدافزارها و به دنبال آن یافتن راه های مناسب جهت حفاظت سیستم ها درمقابل آنهاست که از مهمترین دغدغه های برنامه نویسان و متخصصین امنیت اطلاعات، شناخت به موقع و یافتن راه های مقابله با اثرات مخرباینگونه بدافزارها می باشد. در این راستا طی سالهای اخیر استفاده از الگوریتم های داده کاوی و هوش مصنوعی بعنوان یکی از روشهای نوظهور وامیدوار کننده توانسته است کاربرد بسیاری جهت شناسایی و تشخیص انواع بدافزارها داشته باشد. لذا در این تحقیق سعی کردیم با استفاده ازشبکه عصبی مصنوعی و الگوریتم ازدحام ذرات، فایل های آلوده به بدافزار را تشخیص دهیم. پیاده سازی روش پیشنهادی نشان میدهد که توانستهاست فایل های آلوده به بدافزار را با استفاده از مجموعه داده مربوط به فایل های سالم و آلوده به بدافزار با دقت 0.91 درصد تشخیص دهد که نشان ازعملکرد بالای آن دارد.

  • شریف پژوه

پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی

پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی

چکیده:

با گسترش روز افزون استفاده از سامانه های نوین بانکی و افزایش تعداد عملیات بانکی، سوء استفاده های مالی و تقلب در این عملیات بیشاز پیش گسترش پیدا کرده است. اینگونه سوء استفاده ها علاوه بر اتلاف منابع مالی، باعث کاهش اعتماد مشتریان به استفاده از سامانه های نوینبانکی و در نتیجه کاهش اثر بخشی این سامانه ها در مدیریت بهینه ی سرمایه و تراکنش های مالی می شود. در این پژوهش جهت کشف تقلببانکی بر روی مجموعه داده های بانکی ، از ترکیب الگوریتم های داده کاوی استفاده شده است. برای انجام کار در ابتدا، خوشه بندی رکوردهای دادهای موجود در مجموعه داده ها صورت گرفته است و به دنبال آن، تشخیص تراکنش های بانکی شبهه دار، در زمان انجام تراکنش تشخیص داده میشود. نتایج حاصل نشان می دهد که روش پیشنهادی دارای میزان دقت بالاتری نسبت به الگوریتم های داده کاوی دیگر همچون درخت تصمیم J48و جنگلهای تصادفی دارد.

  • شریف پژوه

پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه

پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه

چکیده:

 با توجه به گسترش و توسعه سریع شبکه های کامپیوتری، نفوذ و حملات به آن ها افزایش یافته و به طرق و شیوه های مختلف انجام می شود. هدف از تشخیص نفوذ برای شناسایی استفاده غیرمجاز، سوء استفاده، و آسیب پذیری های ایجاد شده توسط کاربران داخلی و مهاجمان خارجی است. در این مقاله قصد داریم که سیستم تشخیص نفوذ از نوع سوء استفاده مبتنی بر سیستم فازی و الگوریتم جستجوی ممنوعه را ارائه کنیم. در ابتدا دانش موردنیاز خود را از سیستم فازی که مجموعه ای از قوانین if-then است، را کسب کرده و سپس الگوریتم جستجوی ممنوعه برای بهینه کردن مجموعه قوانین به دست آمده را بر روی مجموعه داده NSL-KDD پیاده و اجرا نمودیم. نتایج به دست آمده در مقایسه با نتایج موجود حاکی از آن است که روش پیشنهادی از صحت و کارایی مناسبی برخوردار است.

  • شریف پژوه

پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر

پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر

چکیده:

 با پیشرفت تکنولوژی در زمینه داده کاوی، مجموعه های دادهای با ابعاد بالا در حال افزایش است که در آن بسیاری ازویژگیها بی ربط و زاید هستند و منجر به کاهش کارایی الگوریتم های دسته بندی میشود؛ بنابراین، کاهش ابعاد این مجموعه های دادهای تبدیل به یک تلاش ضروری شده است. انتخاب ویژگی یک تکنیک رایج برای غلبه بر این مشکل است که هدف آن، شناسایی زیرمجموعه ای از ویژگیهای مفید از بین مجموعه ویژگیهای اولیه برای بهبود عملکرد طبقه بندی است. در این مقاله، روش جدیدی برای انتخاب ویژگی مبتنی بر راهکار فیلتر به نامSimRelICA ارایه میشود. در روش پیشنهادی با بکارگیری الگوریتم رقابت استعماری چارچوبی ارایه شده که فرآیند انتخاب ویژگی را مستقل از هر طبقه بندی کننده، انجام میدهد. در ابتدا، هر کشور با استفاده از یک شکل جدید، بازنمایی میشود. سپس با توجه به این بازنمایی،روش جدیدی برای تولید جمعیت اولیه پیشنهاد شده است. در طی یک فرآیند تکرارشونده، روش پیشنهادی یک زیرمجموعه ویژگی مناسب را انتخاب میکند که در آن از تابع هزینه جدید برای محاسبه هزینه هر کشور استفاده شده است. این تابع هزینه به شکلی ارایه شده است که مناسب بودن هر ویژگی را ارزیابی میکند. عملکرد روش پیشنهادی با روشهای انتخاب ویژگی شناخته شده، با استفاده از طبقه بندی کنندههای مختلف مقایسه شده است. نتایج آزمایشها نشان از برتری روش پیشنهادیSimRelICA به لحاظ دقت طبقهبندی، بر روشهای انتخاب ویژگی موجود دارد. همچنین نتایج نشان میدهد که با توجه به مستقل بودن روش پیشنهادی از طبقه بندی کننده، عملکرد مناسبی بر روی طبقه بندی کننده های مختلف داشته است.

  • شریف پژوه

پیاده سازی مقاله: شناسایی و کشف بیماری آلزایمر با کمک داده کاوی و درخت تصمیم بهینه شده

پیاده سازی مقاله: شناسایی و کشف بیماری آلزایمر با کمک داده کاوی و درخت تصمیم بهینه شده

چکیده:

امروزه بیماری آلزایمر بسیار شیوع پیداکرده است و تشخیص سریع آن یکی از موارد بسیار مهمی می باشد که می تواند در پیشگیری و درمان افرادب سیار موثر واقع شود. از این رو در این تحقیق روشی برای پیش بینی بیماری آلزایمر ارائه شده است. در اینجا با استفاده از الگوریتم ژنتیک ویژگی های موثر شناسایی می شوند تا اینکه تعداد ویژگی ها کاهش یافته و تنها ویژگی های موثرتر شناسایی شوند و در ادامه با استفاده از درخت تصمیم گیری سعی شده است تا راه حلی بیان شود که با استفاده از پارامترهایی که از طریق داده کاوی به دست آمده است بیماری آلزایمر در افراد پیش بینی شود. سیستم ارائه شده در اینجا قادر است تا تصمیماتی را اتخاذ کند که این تصمیمات می تواند در جهت رسیدن به سیستمی توصیه گر خود مختار بسیار سودمند باشد. سربار محاسباتی روش پیشنهادی (O(n و سرابر حافظه (O(mn می باشد که در ان m تعداد ویژگی های دیتاست می باشد.

  • شریف پژوه

پیاده سازی مقاله: استفاده از تکنیک های متن کاوی در تجزیه و تحلیل احساسات کاربران ایرانی LinkedIn

پیاده سازی مقاله: استفاده از تکنیک های متن کاوی در تجزیه و تحلیل احساسات کاربران ایرانی LinkedIn

چکیده:

امروزه با استفاده روزافزون از شبکه های اجتماعی شاهد حجم انبوهی ازنظرات کاربران درارتباط با موضوعات مختلف هستیمکه مطالعه و تحلیل نظرات در حجم انبوه با مشکلات زیادی روبرو بوده و کاربرد تکنیک های علمی نوین ضرورتی اجتناب ناپذیرمی باشد. در این پژوهش با کاربرد تکنیک متن کاوی و تحلیل محتوا پدیده های اقتصادی سال 1398 را در شبکه اجتماعی LinkedIn مورد مطالعه و بررسی قرار داده و تمام پست های انتشار یافته شامل؛ 2800 پست را در چهار گروه؛ تورم و افزایش هزینه های زندگی و افزایش قیمت کالا ها، افزایش دستمزد کارگران و کارمندان، افزایش نرخ بیکاری، تغییر نرخ ارز رده بندی و همبستگی بین رده ها را با ویژگی کاربران توصیف نموده است. پست های کاربران به کمک نرم افزار rapidmainer و الگوریتم های متن کاوی مورد تحلیل قرار گرفت و در پایان به این نتیجه رسیدیم که احساسات و فعالیت های کاربران در شبکه های اجتماعی ارتباط مستقیم با ویژگی های شخصی آنها دارد.

  • شریف پژوه

پیاده سازی مقاله: روشی برای تحلیل احساسات توییت براساس ترکیب روش های یادگیری ماشین و شباهت معنایی

پیاده سازی مقاله: ارائه روشی کارا برای تجزیه و تحلیل احساسات توییت براساس ترکیب روش های یادگیری ماشین و شباهت معنایی

چکیده:

با ظهور شبکه های اجتماعی حجم اطلاعات تولید شده رشدی صعودی داشته است. توییتر از جمله شبکه های اجتماعیاست که کاربران آن پیام هایی با طول کمتر از 140 کاراکتر (توییت) ارسال می کنند. تشخیص احساسات کاربران درزمان حال بیشترین کاربرد را در سایت های عرضه انواع کالا (مجازی یا حقیقی) دارد. با این حال مشکل عمده طبقهبندی توییت ها، ابعاد بالای فضای ویژگی است. در حال حاضر روش های بسیاری برای مقابله با انتخاب ویژگی هایتوییت وجود دارد. به منظور بهبود عملکرد طبقه بندی توییت ها، ما یکی دیگر از روش انتخاب ویژگی را ارئه می کنیم.مطالعه ما بر اساس الگوریتم ژنتیک است، ما یک الگوریتم ژنتیک جدید به منظور کاهش ابعاد بالا فضای ویژگی طراحیمیکنیم. پارامترهای الگوریتم ژنتیک جدید بر اساس میزان برازندگی و شباهت ویژگی ها تعیین می شود. نتایج حاصلاز آزمایش ها نشان می دهد که روش پیشنهادی میزان دقت و صحت را در انتخاب مجموعه ویژگی و پیش بینی احساسات توییت بهبود بخشیده است.

  • شریف پژوه

پیاده سازی مقاله: بهینه سازی زمان بندی در رایانش ابری با الگوریتم های کلونی مورچه و ازدحام ذرات

پیاده سازی مقاله: روشی برای بهینه سازی زمان بندی در رایانش ابری با الگوریتم های کلونی مورچه و ازدحام ذرات


چکیده: در دنیای امروز حجم عظیمی از اطلاعات به صورت متن می باشد. بنابراین تکنیک های متن کاوی اهمیت یافته اند. کاوش نظرات یا تحلیل احساسات به عنوان شاخه ای از متن کاوی، به معنی یافتن دیدگاه نویسنده متن درباره یک موضوع خاص است. اینترنت این امکان را برای کاربران فراهم می کند تا نظرات خود را به سهولت بیان کنند و از نظرات دیگران در مورد موضوعی خاص مطلع شوند. حجم بالا و فقدان ساختار مناسب برای متن نظرات ارائه شده بروی بستر وب، استفاده از دانش پنهان درون آنها را دشوار نموده است. بنابراین ارائه روش هایی که بتواند این دانش را به صورت خلاصه و ساخت یافته آماده کرده و در اختیار ما قرار دهد حائز اهمیت است. در این پژوهش سعی شده به ارائه روشی برای تحلیل نظرات ذیل خبر در سایت های خبری با توجه به متن خبر پرداخته شود. در این راستا سعی شده با استفاده از ویژگی های دستوری متون مانند اسم و فعل و همچنین تحلیل بار احساسی جملات، رابطه نظر با خبر و دیدگاه نویسنده نظر را با توجه به موضوع متن خبرکشف کنیم. در ادامه به ارزیابی روش، با پیاده سازی آن روی مجموعه داده جمع آوری شده از اخبار و نظرات به زبان فارسی پرداخته شده است. روش پیشنهادی صحت تشخیص 42.9 درصدی دارد.

  • شریف پژوه

پیاده سازی مقاله: ارائه روشی برای آنالیز احساسات در متن نظرات

پیاده سازی مقاله: ارائه روشی برای آنالیز احساسات در متن نظرات


چکیده: در دنیای امروز حجم عظیمی از اطلاعات به صورت متن می باشد. بنابراین تکنیک های متن کاوی اهمیت یافته اند. کاوش نظرات یا تحلیل احساسات به عنوان شاخه ای از متن کاوی، به معنی یافتن دیدگاه نویسنده متن درباره یک موضوع خاص است. اینترنت این امکان را برای کاربران فراهم می کند تا نظرات خود را به سهولت بیان کنند و از نظرات دیگران در مورد موضوعی خاص مطلع شوند. حجم بالا و فقدان ساختار مناسب برای متن نظرات ارائه شده بروی بستر وب، استفاده از دانش پنهان درون آنها را دشوار نموده است. بنابراین ارائه روش هایی که بتواند این دانش را به صورت خلاصه و ساخت یافته آماده کرده و در اختیار ما قرار دهد حائز اهمیت است. در این پژوهش سعی شده به ارائه روشی برای تحلیل نظرات ذیل خبر در سایت های خبری با توجه به متن خبر پرداخته شود. در این راستا سعی شده با استفاده از ویژگی های دستوری متون مانند اسم و فعل و همچنین تحلیل بار احساسی جملات، رابطه نظر با خبر و دیدگاه نویسنده نظر را با توجه به موضوع متن خبرکشف کنیم. در ادامه به ارزیابی روش، با پیاده سازی آن روی مجموعه داده جمع آوری شده از اخبار و نظرات به زبان فارسی پرداخته شده است. روش پیشنهادی صحت تشخیص 42.9 درصدی دارد.

  • شریف پژوه

پیاده سازی مقاله: ارائه روش نظارتی برای نظرکاوی در زبان فارسی با استفاده از لغت نامه و الگوریتم SVM

پیاده سازی مقاله: ارائه روش نظارتی برای نظرکاوی در زبان فارسی با استفاده از لغت نامه و الگوریتم SVM


چکیده: به سبب رشد سریع شبکه ها و رسانه های اجتماعی، امکان دسترسی افراد به نظرهای دیگران افزایش یافته است. نظرها، حاوی اطلاعات ارزشمندی اند که با تحلیل آنها، می توان به گرایش ها و ترجیح افراد پی برد و نظرهای مثبت و منفی را نسبت به مسائل گوناگون، شناسایی کرد. نظرکاوی فرایندی است که به تحلیل عاطفه ها، احساس ها و نظرهای افراد می پردازد و از این طریق، اولویت افراد را شناسایی می کند. در این مقاله، روشی برای نظرکاوی در زبان فارسی ارائه شده است که از ترکیب لغت نامه و الگوریتم نظارتی ماشین بردار پشتیبان (SVM) استفاده می کند. برای ایجاد لغت نامه، از لغت نامه SentiWordNet بهره برده شده است. در واقع این لغت نامه، مجموعه ویژگی های الگوریتم SVM است. برای ارزیابی نتایج، از داده های دامنه هتل استفاده شد. چهار فرضیه برای دستیابی به بهترین نتیجه تعریف شد که از این بین، بیشترین درستی، به فرضیه حاصل ضرب قطبیت در تعداد تکرار کلمه ها اختصاص یافت.

  • شریف پژوه

پیاده سازی مقاله: سیستم خبره تشخیص بیماری های تیروییدی

پیاده سازی مقاله: سیستم خبره تشخیص بیماری های تیروییدی

 
چکیده:
 سیستم های خبره یا مبتنی بر دانش، رایج ترین نوع سیستمهای هوش مصنوعی در علم پزشکی در کاربرد ها و استفاده های کلینیکی هستند. آنها شامل دانش پزشکی هستند که این دانش معمولا در محدوده وظیفه و عملیاتی است که به صورت مخصوص برای او تعریف شده است. سیستم های خبره می توانند با استفاده از داده های مربوط به هر بیمار، نتیجه گیری منطقی و معقولی را به دست آورند. با وجود تغییرات فراوان و تفاوت های موجود، دانش درون سیستم خبره، بسته به نوع آن، در قالب مجموعه ای از قوانین، نمایش داده می شود.دراین مقاله، برای تشخیص اختلال های تیرویید را با استفاده از یک سیستم خبره مبتنی بر آنتولوژی و روش فازی عصبی پیشنهاد می دهدOBESTDD مخفف عبارت . سیستم خبره مبتنی بر آنتولوژی برای تشخیص اختلال تیرویید است. در این تشخیص، از آنتولوژی برای مدل سازی محتوا و مفاهیم دانش حوزه ای، و همچنین استنتاج تشخیص مرتبط با بیماری بر اساس قوانین، استفاده می شود.فایده آنتولوژی این است که دانش ارایه شده، هم برای کامپیوتر و هم برای انسان، به اندازه کافی خوانایی دارد. استفاده از آنتولوژی در حوزه پزشکی و مراقبت های بهداشتی، باعث شده است که افراد متخصص و یا غیر متخصص در این حوزه بتوانند به راحتی دانش خود را ارایه دهند. همچنین ما با استفاده از روش فازی عصبی، توانستیم قوانین فازی را به دست آورده و آنها را در سیستم سیستم خبره تشخیص اختلال تیروییدESTDDجایگذاری کنیم. به این صورت، این سیستم توانست اختلال تیرویید را با دقت 95.33 % تشخیص دهد. علاوه بر این، می توان از این سیستم برای آموزش دانشجویان رشته پزشکی نیز استفاده کرد.

  • شریف پژوه

پیاده سازی مقاله: طراحی یک سیستم خبره برای تشخیص بیماری قلبی

پیاده سازی مقاله: طراحی یک سیستم خبره برای تشخیص بیماری قلبی

 
چکیده:
 باتوجه به اینکه مردم به تازگی علاقه به وضعیت سلامتیشان دارند، توسعه دامنه کاربرد پزشکی یکی از فعالترین زمینه های تحقیقات را به خود اختصاص داده است. یک مثال از دامنه کاربرد پزشکی کشف روش برای بیماری قلبی بر پایه روش تشخیص به کمک رایانه است، که اطلاعات از منابع دیگر بدست آمده و توسط نرم افزارهای رایانه ای ارزیابی شده است. سیستم های خبر، با هدف عمومی کردن مهارت های افراد متخصص، برای افراد غیرمتخصص طراحی شده اند. در واقع این نرم افزارها، الگوی منطقی ای را که یک متخصص براساس آنها تصمیم گیری می کند، شناسایی می نمایند و سپس بر اساس آن الگوها، مانند انسان ها تصمیم گیری می کنند. تاکنون سیستم های خبره ی مختلفی در زمینه ی علوم پزشکی ارائه شده و در این مورد پیشرفت زیادی داشته است. در حالی که سرعت عمل در تشخیص بیماری قلبی و در بهبود حال بیماران بسیار موثر می باشد، اما گاهی دسترسی به پزشکان متخصص برای بیماران وجود ندارد و ا ز این رو طراحی سیستمی با دانش پزشک متخصص که تشخیص مناسب را به بیماران ارائه نماید، شرایط درمان به موقع بیماران را رفراهم می کند. در این تحقیقی یک نمونه از قواعد نامعلوم سنگین برپایه روش پشتیبانی تصمیم برای تشخیص بیماری قبلی آورده شده است. تصمیم پزشکی پیشنهادی سیستم برای پیش بینی ریسک بیماران قلبی شامل دو فاز است: (1) روش خودکار برای قاعده سنگین نامعلوم (2) توسعه قاعده سنگین براساس پشتیببانی تصیمیم سیستم . سپس سیستم نامعلوم در مطابقت با قاعده سنگین نامعلوم و خواص منتخب ساخته شده است. در پایان عملکرد سیستم با دقت شبکه عصبی، حساسیت و ویژگی مورد استفاده مقایسه می شود.

  • شریف پژوه

پیاده‌سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

پیاده سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

 
چکیده:
 در این مقاله یک سیستم استنتاج عصبی- فازی برای تشخیص افراد مبتلا به بیماری دیابت پیشنهاد میکنیم. ایده این مقاله، استفاده از روشی جدید در آموزش سیستم فازی طراحی شده با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازیازدحام ذرات است. روش پیشنهادی با استفاده از نرم افزار متلب بر مجموعه داده بیماران دیابتی هندی موجود در مخزن داده یادگیری ماشین پیاده سازی شده است. شاخص های عملکردی این سیستم حساسیت، اختصاصیت و دقت است که در بهترین حالت به ترتیب 63/49و96/11و89/78درصد بدست آمده است.

  • شریف پژوه

پیاده سازی مقاله: بهبود تشخیص بیماری دیابت با استفاده از روش فازی سوگنو و الگوریتم کرم شب تاب

پیاده سازی مقاله: بهبود تشخیص بیماری دیابت با استفاده از ترکیب سیستم استنتاج فازی سوگنو و الگوریتم کرم شب تاب

 
چکیده:
 امروزه درصد بالایی از مردم در معرض خطر ابتلا به بیماری دیابت هستند. این بیماری یکی از خطرناکترین بیماری های عصر حاضر است و تشخیص به موقع این بیماری نقش به سزایی در درمان آن دارد.
روش ها: در این مقاله با استفاده از سیستم استنتاج فازی سوگنو و الگوریتم هوشمند کرم شب تاب، روشی نوین برای تشخیص دیابت ارائه شده است. روش ارائه شده قادر است با استفاده از تعداد کمی قوانین ساده فازی با دقت مطلوبی بیماری دیابت را تشخیص دهد.
یافته ها: کارآیی ترکیب سیستم استنتاج فازی سوگنو و الگوریتم کرم شب تاب 24/87 درصد به دست آمد.
نتیجه گیری: نتایج تجربی نشان می­دهند که این روش روی مجموعه داده استاندارد PID دقت بیشتری نسبتی به الگوریتم­های موجود در این زمینه دارد.

  • شریف پژوه

پیاده سازی الگوریتم خفاش (Bat algorithm) در متلب(MATLAB)

پیاده سازی الگوریتم خفاش (Bat algorithm) در متلب(MATLAB):

الگوریتم خفاش یک الگوریتم متاهیورستیک است که در سال 2010 توسط xin she yang ارائه شد. در این الگوریتم از توانایی ردیابی و انعکاس صدا در خفاش ها ی کوچک الهام گرفته شده است. هر خفاش مجازی به طور تصادفی با سرعت v_i در موقعیت مکانی x_i با فرکانس λ متفاوت و بلندی صدا و طول موج متغیر A_i پرواز می کند.

هر خفاش با جستجو و یافتن طعمه، فرکانس، بلندی صدا و میزان نرخ پالس های ارسالی r خود را تغییر می دهد. بهترین مکان در هر تکرار پس از مقایسه ی موقعیت خفاش های مجازی انتخاب می شود. انتخاب بهترین ها تا زمان برآورده شدن معیارهای توقف مشخص شده ادامه می یابد. برای مطالعه ی جزییات بیشتر در مورد الگوریتم خفاش کلیک کنید. در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم خفاش به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

زمانبندی بهینه کارها با استفاده از الگوریتم ممتیک در محیط رایانش ابری (با استفاده از CloudSim)

سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم ممتیک در محیط رایانش ابری (CloudSim):

در این پروژه، با استفاده از الگوریتم ممتیک (Memetic algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی

سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:

 

رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده‌سازی مقاله: طراحی و پیاده‌سازی یک سیستم عصبی-فازی (ANFIS) برای تشخیص بیماری MS

پیاده سازی مقاله: طراحی و پیاده‌سازی یک سیستم عصبی-فازی (ANFIS) برای تشخیص بیماری MS

 
چکیده: 
تشخیص پزشکی اغلب با تخصص و تجربه کادر پزشکی انجام می‌شود ولی بعضی مواقع ممکن است منجر به تشخیص نادرست شود. اسکلروز چندگانه (MS) بیماری دستگاه عصبی مرکزی است. در این بیماری بدن پادتنهایی را تولید می‌کند که به میلین حمله کرده و آسیب می‌زنند. در MS غلاف میلین (که پوششی عایقی برای رشته های عصبی است) دچار مشکل می‌شود و صدمه‌ی وارده به میلین در سیستم‌های عصبی مرکزی، ارتباط بین مغز و اسپینال کورد و دیگر اعضای بدن را قطع می‌کند. مشکل عمده‌ای که وجود دارد ضعف در تشخیص آن است. به منظور بهبود تشخیص، از شبکه عصبی فازی (ANFIS) استفاده می‌شود. ایده اصلی این گونه شبکه‌ها از شیوه کارکرد سیستم عصبی زیستی برای پردازش داده‌ها و اطلاعات به منظور یادگیری و ایجاد دانش الهام گرفته شده است. این سیستم از شمار زیادی عناصر پردازشی فوقالعاده بهم پیوسته به نام نورون تشکیل شده است که برای حل یک مساله با هم هماهنگ عمل می‌کنند. در این سیستم قسمت شبکه عصبی برای یادگیری و طبقه‌بندی توانایی‌ها و نیز پیوند و اصلاح الگو به کار می‌رود. قسمت شبکه عصبی به طور خودکار، قواعد منطق فازی و توابع عضویت را در طول دوره تناوب یادگیری ایجاد می‌کند. چند روش برای آموزش شبکه‌های عصبی وجود دارد که در این تحقیق از روش ترکیبی استفاده می‌شود. شبکه‌ی عصبی-فازی توانایی ترکیب قدرت زبانی یک سیستم فازی با قدرت عددی یک شبکه عصبی را دارد. در این شبکه برای بهینهسازی داده‌های ورودی خروجی از تکنیک K-fold cross validation استفاده می‌شود. پیاده‌سازی این سیستم در محیط متلب با فایلی حاوی600 داده که دارای6 ستون، که 5 ستون آن ورودی و 1 ستون خروجی می‌باشد انجام شد و دارای دقت تقریباً 96% می‌باشد.

  • شریف پژوه

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی: 

 
چکیده: 
یکی از چالشهای تشخیص تقلب در حوزه سیستم های پرداخت الکترونیکی، تنوع و تغییر مداوم شیوههای تقلب است لذا نیاز به روش های تشخیص تقلب با کارایی و دقت باال به روشنی قابل درک است. در این پژوهش روش داده کاوی رگرسیون لجستیک، شبکه عصبی BP و شبکه عصبی GMDH برای ساخت مدلهایی جهت شناسایی تقلب در تراکنشهای مالی دستکاه خودپرداز یک بانک پیاده سازی شدند. در ادامه، این روشها برروی دادههای واقعی آزمایش و کارایی هر روش سنجیده شد. روش شبکه عصبی GMDH با دقت 19.37 درصد در شناسایی تقلب یا غیرتقلب بودن تراکنشهای مالی بهترین کارایی را در مقایسه با دو روش رگرسیون لجستیک با دقت کلی 98.63 و شبکه عصبی BP با دقت کلی 0..34داشت. باتوجه به نتایج بدست آمده روش پیشنهادی در تشخیص تقلب نسبت به دو روش دیگر با دقت بیشتری عمل کرده است.

  • شریف پژوه

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی: 

 
چکیده: 

در سیستمهای تشخیص نفوذ، با داده های حجیم برای تحلیل مواجه هستند. بررسی مجموعه داده سیستمهای تشخیص نفوذ نشان می دهد که بسیاری از ویژگیها، ویژگیهای غیرمفید، بی تاثیر در سناریوهای حمله و یا ویژگیهای نامربوط هستند. بنابراین حذف ویژگیهای نامناسب از مجموعه ویژگی، به عنوان یک راهکار مناسب برای کاهش مجموعه داده سیستمهای تشخیص نفوذ معرفی می شود. نیازمندی دیگری که در سیستمهای تشخیص نفوذ مطرح می باشد، دانستن مجموعه ویژگی بهینه برای هر نوع حمله است. چرا که در اینصورت، سیستم تشخیص نفوذ قادر خواهد بود برای تشخیص هر نوع حمله، تنها از مجموعه ویژگی متناسب با آن حمله استفاده کند. در این تحقیق، روشی ارایه می شود که قادر است تمام نیازمندیهای فوق را پاسخگو باشد، علاوه بر این، این روش نحوه ارتباط بین ویژگیها را برای تحلیل بهتر آنها نشان می دهد. روش پیشنهادی از مفاهیم داده کاوی و تحلیل شبکه های اجتماعی استفاده می نماید.

 

  • شریف پژوه
موضوعات
Latest Posts
Archive