۳۸۴ مطلب با موضوع «هوش مصنوعی» ثبت شده است

پیاده سازی مقاله: روشی برای تحلیل احساسات توییت براساس ترکیب روش های یادگیری ماشین و شباهت معنایی

پیاده سازی مقاله: ارائه روشی کارا برای تجزیه و تحلیل احساسات توییت براساس ترکیب روش های یادگیری ماشین و شباهت معنایی

چکیده:

با ظهور شبکه های اجتماعی حجم اطلاعات تولید شده رشدی صعودی داشته است. توییتر از جمله شبکه های اجتماعیاست که کاربران آن پیام هایی با طول کمتر از 140 کاراکتر (توییت) ارسال می کنند. تشخیص احساسات کاربران درزمان حال بیشترین کاربرد را در سایت های عرضه انواع کالا (مجازی یا حقیقی) دارد. با این حال مشکل عمده طبقهبندی توییت ها، ابعاد بالای فضای ویژگی است. در حال حاضر روش های بسیاری برای مقابله با انتخاب ویژگی هایتوییت وجود دارد. به منظور بهبود عملکرد طبقه بندی توییت ها، ما یکی دیگر از روش انتخاب ویژگی را ارئه می کنیم.مطالعه ما بر اساس الگوریتم ژنتیک است، ما یک الگوریتم ژنتیک جدید به منظور کاهش ابعاد بالا فضای ویژگی طراحیمیکنیم. پارامترهای الگوریتم ژنتیک جدید بر اساس میزان برازندگی و شباهت ویژگی ها تعیین می شود. نتایج حاصلاز آزمایش ها نشان می دهد که روش پیشنهادی میزان دقت و صحت را در انتخاب مجموعه ویژگی و پیش بینی احساسات توییت بهبود بخشیده است.

  • شریف پژوه

پیاده سازی مقاله: بهینه سازی زمان بندی در رایانش ابری با الگوریتم های کلونی مورچه و ازدحام ذرات

پیاده سازی مقاله: روشی برای بهینه سازی زمان بندی در رایانش ابری با الگوریتم های کلونی مورچه و ازدحام ذرات


چکیده: در دنیای امروز حجم عظیمی از اطلاعات به صورت متن می باشد. بنابراین تکنیک های متن کاوی اهمیت یافته اند. کاوش نظرات یا تحلیل احساسات به عنوان شاخه ای از متن کاوی، به معنی یافتن دیدگاه نویسنده متن درباره یک موضوع خاص است. اینترنت این امکان را برای کاربران فراهم می کند تا نظرات خود را به سهولت بیان کنند و از نظرات دیگران در مورد موضوعی خاص مطلع شوند. حجم بالا و فقدان ساختار مناسب برای متن نظرات ارائه شده بروی بستر وب، استفاده از دانش پنهان درون آنها را دشوار نموده است. بنابراین ارائه روش هایی که بتواند این دانش را به صورت خلاصه و ساخت یافته آماده کرده و در اختیار ما قرار دهد حائز اهمیت است. در این پژوهش سعی شده به ارائه روشی برای تحلیل نظرات ذیل خبر در سایت های خبری با توجه به متن خبر پرداخته شود. در این راستا سعی شده با استفاده از ویژگی های دستوری متون مانند اسم و فعل و همچنین تحلیل بار احساسی جملات، رابطه نظر با خبر و دیدگاه نویسنده نظر را با توجه به موضوع متن خبرکشف کنیم. در ادامه به ارزیابی روش، با پیاده سازی آن روی مجموعه داده جمع آوری شده از اخبار و نظرات به زبان فارسی پرداخته شده است. روش پیشنهادی صحت تشخیص 42.9 درصدی دارد.

  • شریف پژوه

پیاده سازی مقاله: ارائه روشی برای آنالیز احساسات در متن نظرات

پیاده سازی مقاله: ارائه روشی برای آنالیز احساسات در متن نظرات


چکیده: در دنیای امروز حجم عظیمی از اطلاعات به صورت متن می باشد. بنابراین تکنیک های متن کاوی اهمیت یافته اند. کاوش نظرات یا تحلیل احساسات به عنوان شاخه ای از متن کاوی، به معنی یافتن دیدگاه نویسنده متن درباره یک موضوع خاص است. اینترنت این امکان را برای کاربران فراهم می کند تا نظرات خود را به سهولت بیان کنند و از نظرات دیگران در مورد موضوعی خاص مطلع شوند. حجم بالا و فقدان ساختار مناسب برای متن نظرات ارائه شده بروی بستر وب، استفاده از دانش پنهان درون آنها را دشوار نموده است. بنابراین ارائه روش هایی که بتواند این دانش را به صورت خلاصه و ساخت یافته آماده کرده و در اختیار ما قرار دهد حائز اهمیت است. در این پژوهش سعی شده به ارائه روشی برای تحلیل نظرات ذیل خبر در سایت های خبری با توجه به متن خبر پرداخته شود. در این راستا سعی شده با استفاده از ویژگی های دستوری متون مانند اسم و فعل و همچنین تحلیل بار احساسی جملات، رابطه نظر با خبر و دیدگاه نویسنده نظر را با توجه به موضوع متن خبرکشف کنیم. در ادامه به ارزیابی روش، با پیاده سازی آن روی مجموعه داده جمع آوری شده از اخبار و نظرات به زبان فارسی پرداخته شده است. روش پیشنهادی صحت تشخیص 42.9 درصدی دارد.

  • شریف پژوه

پیاده سازی مقاله: ارائه روش نظارتی برای نظرکاوی در زبان فارسی با استفاده از لغت نامه و الگوریتم SVM

پیاده سازی مقاله: ارائه روش نظارتی برای نظرکاوی در زبان فارسی با استفاده از لغت نامه و الگوریتم SVM


چکیده: به سبب رشد سریع شبکه ها و رسانه های اجتماعی، امکان دسترسی افراد به نظرهای دیگران افزایش یافته است. نظرها، حاوی اطلاعات ارزشمندی اند که با تحلیل آنها، می توان به گرایش ها و ترجیح افراد پی برد و نظرهای مثبت و منفی را نسبت به مسائل گوناگون، شناسایی کرد. نظرکاوی فرایندی است که به تحلیل عاطفه ها، احساس ها و نظرهای افراد می پردازد و از این طریق، اولویت افراد را شناسایی می کند. در این مقاله، روشی برای نظرکاوی در زبان فارسی ارائه شده است که از ترکیب لغت نامه و الگوریتم نظارتی ماشین بردار پشتیبان (SVM) استفاده می کند. برای ایجاد لغت نامه، از لغت نامه SentiWordNet بهره برده شده است. در واقع این لغت نامه، مجموعه ویژگی های الگوریتم SVM است. برای ارزیابی نتایج، از داده های دامنه هتل استفاده شد. چهار فرضیه برای دستیابی به بهترین نتیجه تعریف شد که از این بین، بیشترین درستی، به فرضیه حاصل ضرب قطبیت در تعداد تکرار کلمه ها اختصاص یافت.

  • شریف پژوه

پیاده سازی مقاله: سیستم خبره تشخیص بیماری های تیروییدی

پیاده سازی مقاله: سیستم خبره تشخیص بیماری های تیروییدی

 
چکیده:
 سیستم های خبره یا مبتنی بر دانش، رایج ترین نوع سیستمهای هوش مصنوعی در علم پزشکی در کاربرد ها و استفاده های کلینیکی هستند. آنها شامل دانش پزشکی هستند که این دانش معمولا در محدوده وظیفه و عملیاتی است که به صورت مخصوص برای او تعریف شده است. سیستم های خبره می توانند با استفاده از داده های مربوط به هر بیمار، نتیجه گیری منطقی و معقولی را به دست آورند. با وجود تغییرات فراوان و تفاوت های موجود، دانش درون سیستم خبره، بسته به نوع آن، در قالب مجموعه ای از قوانین، نمایش داده می شود.دراین مقاله، برای تشخیص اختلال های تیرویید را با استفاده از یک سیستم خبره مبتنی بر آنتولوژی و روش فازی عصبی پیشنهاد می دهدOBESTDD مخفف عبارت . سیستم خبره مبتنی بر آنتولوژی برای تشخیص اختلال تیرویید است. در این تشخیص، از آنتولوژی برای مدل سازی محتوا و مفاهیم دانش حوزه ای، و همچنین استنتاج تشخیص مرتبط با بیماری بر اساس قوانین، استفاده می شود.فایده آنتولوژی این است که دانش ارایه شده، هم برای کامپیوتر و هم برای انسان، به اندازه کافی خوانایی دارد. استفاده از آنتولوژی در حوزه پزشکی و مراقبت های بهداشتی، باعث شده است که افراد متخصص و یا غیر متخصص در این حوزه بتوانند به راحتی دانش خود را ارایه دهند. همچنین ما با استفاده از روش فازی عصبی، توانستیم قوانین فازی را به دست آورده و آنها را در سیستم سیستم خبره تشخیص اختلال تیروییدESTDDجایگذاری کنیم. به این صورت، این سیستم توانست اختلال تیرویید را با دقت 95.33 % تشخیص دهد. علاوه بر این، می توان از این سیستم برای آموزش دانشجویان رشته پزشکی نیز استفاده کرد.

  • شریف پژوه

پیاده سازی مقاله: طراحی یک سیستم خبره برای تشخیص بیماری قلبی

پیاده سازی مقاله: طراحی یک سیستم خبره برای تشخیص بیماری قلبی

 
چکیده:
 باتوجه به اینکه مردم به تازگی علاقه به وضعیت سلامتیشان دارند، توسعه دامنه کاربرد پزشکی یکی از فعالترین زمینه های تحقیقات را به خود اختصاص داده است. یک مثال از دامنه کاربرد پزشکی کشف روش برای بیماری قلبی بر پایه روش تشخیص به کمک رایانه است، که اطلاعات از منابع دیگر بدست آمده و توسط نرم افزارهای رایانه ای ارزیابی شده است. سیستم های خبر، با هدف عمومی کردن مهارت های افراد متخصص، برای افراد غیرمتخصص طراحی شده اند. در واقع این نرم افزارها، الگوی منطقی ای را که یک متخصص براساس آنها تصمیم گیری می کند، شناسایی می نمایند و سپس بر اساس آن الگوها، مانند انسان ها تصمیم گیری می کنند. تاکنون سیستم های خبره ی مختلفی در زمینه ی علوم پزشکی ارائه شده و در این مورد پیشرفت زیادی داشته است. در حالی که سرعت عمل در تشخیص بیماری قلبی و در بهبود حال بیماران بسیار موثر می باشد، اما گاهی دسترسی به پزشکان متخصص برای بیماران وجود ندارد و ا ز این رو طراحی سیستمی با دانش پزشک متخصص که تشخیص مناسب را به بیماران ارائه نماید، شرایط درمان به موقع بیماران را رفراهم می کند. در این تحقیقی یک نمونه از قواعد نامعلوم سنگین برپایه روش پشتیبانی تصمیم برای تشخیص بیماری قبلی آورده شده است. تصمیم پزشکی پیشنهادی سیستم برای پیش بینی ریسک بیماران قلبی شامل دو فاز است: (1) روش خودکار برای قاعده سنگین نامعلوم (2) توسعه قاعده سنگین براساس پشتیببانی تصیمیم سیستم . سپس سیستم نامعلوم در مطابقت با قاعده سنگین نامعلوم و خواص منتخب ساخته شده است. در پایان عملکرد سیستم با دقت شبکه عصبی، حساسیت و ویژگی مورد استفاده مقایسه می شود.

  • شریف پژوه

پیاده‌سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

پیاده سازی مقاله: طراحی یک سیستم استنتاج عصبی - فازی با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات در تشخیص بیماری دیابت

 
چکیده:
 در این مقاله یک سیستم استنتاج عصبی- فازی برای تشخیص افراد مبتلا به بیماری دیابت پیشنهاد میکنیم. ایده این مقاله، استفاده از روشی جدید در آموزش سیستم فازی طراحی شده با استفاده از الگوریتم ژنتیک و الگوریتم بهینه سازیازدحام ذرات است. روش پیشنهادی با استفاده از نرم افزار متلب بر مجموعه داده بیماران دیابتی هندی موجود در مخزن داده یادگیری ماشین پیاده سازی شده است. شاخص های عملکردی این سیستم حساسیت، اختصاصیت و دقت است که در بهترین حالت به ترتیب 63/49و96/11و89/78درصد بدست آمده است.

  • شریف پژوه

پیاده سازی مقاله: بهبود تشخیص بیماری دیابت با استفاده از روش فازی سوگنو و الگوریتم کرم شب تاب

پیاده سازی مقاله: بهبود تشخیص بیماری دیابت با استفاده از ترکیب سیستم استنتاج فازی سوگنو و الگوریتم کرم شب تاب

 
چکیده:
 امروزه درصد بالایی از مردم در معرض خطر ابتلا به بیماری دیابت هستند. این بیماری یکی از خطرناکترین بیماری های عصر حاضر است و تشخیص به موقع این بیماری نقش به سزایی در درمان آن دارد.
روش ها: در این مقاله با استفاده از سیستم استنتاج فازی سوگنو و الگوریتم هوشمند کرم شب تاب، روشی نوین برای تشخیص دیابت ارائه شده است. روش ارائه شده قادر است با استفاده از تعداد کمی قوانین ساده فازی با دقت مطلوبی بیماری دیابت را تشخیص دهد.
یافته ها: کارآیی ترکیب سیستم استنتاج فازی سوگنو و الگوریتم کرم شب تاب 24/87 درصد به دست آمد.
نتیجه گیری: نتایج تجربی نشان می­دهند که این روش روی مجموعه داده استاندارد PID دقت بیشتری نسبتی به الگوریتم­های موجود در این زمینه دارد.

  • شریف پژوه

پیاده سازی الگوریتم خفاش (Bat algorithm) در متلب(MATLAB)

پیاده سازی الگوریتم خفاش (Bat algorithm) در متلب(MATLAB):

الگوریتم خفاش یک الگوریتم متاهیورستیک است که در سال 2010 توسط xin she yang ارائه شد. در این الگوریتم از توانایی ردیابی و انعکاس صدا در خفاش ها ی کوچک الهام گرفته شده است. هر خفاش مجازی به طور تصادفی با سرعت v_i در موقعیت مکانی x_i با فرکانس λ متفاوت و بلندی صدا و طول موج متغیر A_i پرواز می کند.

هر خفاش با جستجو و یافتن طعمه، فرکانس، بلندی صدا و میزان نرخ پالس های ارسالی r خود را تغییر می دهد. بهترین مکان در هر تکرار پس از مقایسه ی موقعیت خفاش های مجازی انتخاب می شود. انتخاب بهترین ها تا زمان برآورده شدن معیارهای توقف مشخص شده ادامه می یابد. برای مطالعه ی جزییات بیشتر در مورد الگوریتم خفاش کلیک کنید. در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم خفاش به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

زمانبندی بهینه کارها با استفاده از الگوریتم ممتیک در محیط رایانش ابری (با استفاده از CloudSim)

سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم ممتیک در محیط رایانش ابری (CloudSim):

در این پروژه، با استفاده از الگوریتم ممتیک (Memetic algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی

سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:

 

رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده‌سازی مقاله: طراحی و پیاده‌سازی یک سیستم عصبی-فازی (ANFIS) برای تشخیص بیماری MS

پیاده سازی مقاله: طراحی و پیاده‌سازی یک سیستم عصبی-فازی (ANFIS) برای تشخیص بیماری MS

 
چکیده: 
تشخیص پزشکی اغلب با تخصص و تجربه کادر پزشکی انجام می‌شود ولی بعضی مواقع ممکن است منجر به تشخیص نادرست شود. اسکلروز چندگانه (MS) بیماری دستگاه عصبی مرکزی است. در این بیماری بدن پادتنهایی را تولید می‌کند که به میلین حمله کرده و آسیب می‌زنند. در MS غلاف میلین (که پوششی عایقی برای رشته های عصبی است) دچار مشکل می‌شود و صدمه‌ی وارده به میلین در سیستم‌های عصبی مرکزی، ارتباط بین مغز و اسپینال کورد و دیگر اعضای بدن را قطع می‌کند. مشکل عمده‌ای که وجود دارد ضعف در تشخیص آن است. به منظور بهبود تشخیص، از شبکه عصبی فازی (ANFIS) استفاده می‌شود. ایده اصلی این گونه شبکه‌ها از شیوه کارکرد سیستم عصبی زیستی برای پردازش داده‌ها و اطلاعات به منظور یادگیری و ایجاد دانش الهام گرفته شده است. این سیستم از شمار زیادی عناصر پردازشی فوقالعاده بهم پیوسته به نام نورون تشکیل شده است که برای حل یک مساله با هم هماهنگ عمل می‌کنند. در این سیستم قسمت شبکه عصبی برای یادگیری و طبقه‌بندی توانایی‌ها و نیز پیوند و اصلاح الگو به کار می‌رود. قسمت شبکه عصبی به طور خودکار، قواعد منطق فازی و توابع عضویت را در طول دوره تناوب یادگیری ایجاد می‌کند. چند روش برای آموزش شبکه‌های عصبی وجود دارد که در این تحقیق از روش ترکیبی استفاده می‌شود. شبکه‌ی عصبی-فازی توانایی ترکیب قدرت زبانی یک سیستم فازی با قدرت عددی یک شبکه عصبی را دارد. در این شبکه برای بهینهسازی داده‌های ورودی خروجی از تکنیک K-fold cross validation استفاده می‌شود. پیاده‌سازی این سیستم در محیط متلب با فایلی حاوی600 داده که دارای6 ستون، که 5 ستون آن ورودی و 1 ستون خروجی می‌باشد انجام شد و دارای دقت تقریباً 96% می‌باشد.

  • شریف پژوه

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی: 

 
چکیده: 
یکی از چالشهای تشخیص تقلب در حوزه سیستم های پرداخت الکترونیکی، تنوع و تغییر مداوم شیوههای تقلب است لذا نیاز به روش های تشخیص تقلب با کارایی و دقت باال به روشنی قابل درک است. در این پژوهش روش داده کاوی رگرسیون لجستیک، شبکه عصبی BP و شبکه عصبی GMDH برای ساخت مدلهایی جهت شناسایی تقلب در تراکنشهای مالی دستکاه خودپرداز یک بانک پیاده سازی شدند. در ادامه، این روشها برروی دادههای واقعی آزمایش و کارایی هر روش سنجیده شد. روش شبکه عصبی GMDH با دقت 19.37 درصد در شناسایی تقلب یا غیرتقلب بودن تراکنشهای مالی بهترین کارایی را در مقایسه با دو روش رگرسیون لجستیک با دقت کلی 98.63 و شبکه عصبی BP با دقت کلی 0..34داشت. باتوجه به نتایج بدست آمده روش پیشنهادی در تشخیص تقلب نسبت به دو روش دیگر با دقت بیشتری عمل کرده است.

  • شریف پژوه

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی: 

 
چکیده: 

در سیستمهای تشخیص نفوذ، با داده های حجیم برای تحلیل مواجه هستند. بررسی مجموعه داده سیستمهای تشخیص نفوذ نشان می دهد که بسیاری از ویژگیها، ویژگیهای غیرمفید، بی تاثیر در سناریوهای حمله و یا ویژگیهای نامربوط هستند. بنابراین حذف ویژگیهای نامناسب از مجموعه ویژگی، به عنوان یک راهکار مناسب برای کاهش مجموعه داده سیستمهای تشخیص نفوذ معرفی می شود. نیازمندی دیگری که در سیستمهای تشخیص نفوذ مطرح می باشد، دانستن مجموعه ویژگی بهینه برای هر نوع حمله است. چرا که در اینصورت، سیستم تشخیص نفوذ قادر خواهد بود برای تشخیص هر نوع حمله، تنها از مجموعه ویژگی متناسب با آن حمله استفاده کند. در این تحقیق، روشی ارایه می شود که قادر است تمام نیازمندیهای فوق را پاسخگو باشد، علاوه بر این، این روش نحوه ارتباط بین ویژگیها را برای تحلیل بهتر آنها نشان می دهد. روش پیشنهادی از مفاهیم داده کاوی و تحلیل شبکه های اجتماعی استفاده می نماید.

 

  • شریف پژوه

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس

سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس:

 

در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم فاخته (Cuckoo algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه اسپارک

پروژه اسپارک:

 

آپاچی اسپارک (Apache Spark) یک چارچوب رایانش توزیع‌شده متن‌باز است.

اسپارک یک رابط برنامه‌نویسی کاربردی برای برنامه‌نویسی تمام خوشه‌ها با موازی‌سازی داده‌های ضمنی و تحمل خطا فراهم می‌کند.

اسپارک از حافظه اصلی برای نگهداری داده‌های برنامه استفاده می‌کند که این امر باعث سریعتر اجرا شدن برنامه‌ها می‌شود.

همچنین یکی دیگر از مواردی که باعث افزایش کارایی اسپارک می‌شود، استفاده از مکانیسم حافظه نهان هنگام استفاده از داده‌هایی است که قرار است دوباره در برنامه استفاده شوند. اینکار باعث کاهش سربار ناشی از خواندن و نوشتن از دیسک می‌شود.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه پیش بینی نرخ جرم و جنایت با استفاده از تلفیق درخت تصمیم و الگوریتم سیستم ایمنی مصنوعی

سفارش انجام پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم سیستم ایمنی مصنوعی:

 

با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم سیستم ایمنی مصنوعی (Artificial immune system algorithm)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی تشخیص سرطان با زبان R

سفارش انجام پروژه داده کاوی تشخیص سرطان:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از زبان R، مجموعه داده های مربوط به سرطان (انواع سرطان) مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم سیستم ایمنی مصنوعی

سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم سیستم ایمنی مصنوعی:

فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته می‌شود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم سیستم ایمنی مصنوعی (artificial immune system)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات
Archive