چکیده: تشخیص پزشکی اغلب با تخصص و تجربه کادر پزشکی انجام میشود ولی بعضی مواقع ممکن است منجر به تشخیص نادرست شود. اسکلروز چندگانه (MS) بیماری دستگاه عصبی مرکزی است. در این بیماری بدن پادتنهایی را تولید میکند که به میلین حمله کرده و آسیب میزنند. در MS غلاف میلین (که پوششی عایقی برای رشته های عصبی است) دچار مشکل میشود و صدمهی وارده به میلین در سیستمهای عصبی مرکزی، ارتباط بین مغز و اسپینال کورد و دیگر اعضای بدن را قطع میکند. مشکل عمدهای که وجود دارد ضعف در تشخیص آن است. به منظور بهبود تشخیص، از شبکه عصبی فازی (ANFIS) استفاده میشود. ایده اصلی این گونه شبکهها از شیوه کارکرد سیستم عصبی زیستی برای پردازش دادهها و اطلاعات به منظور یادگیری و ایجاد دانش الهام گرفته شده است. این سیستم از شمار زیادی عناصر پردازشی فوقالعاده بهم پیوسته به نام نورون تشکیل شده است که برای حل یک مساله با هم هماهنگ عمل میکنند. در این سیستم قسمت شبکه عصبی برای یادگیری و طبقهبندی تواناییها و نیز پیوند و اصلاح الگو به کار میرود. قسمت شبکه عصبی به طور خودکار، قواعد منطق فازی و توابع عضویت را در طول دوره تناوب یادگیری ایجاد میکند. چند روش برای آموزش شبکههای عصبی وجود دارد که در این تحقیق از روش ترکیبی استفاده میشود. شبکهی عصبی-فازی توانایی ترکیب قدرت زبانی یک سیستم فازی با قدرت عددی یک شبکه عصبی را دارد. در این شبکه برای بهینهسازی دادههای ورودی خروجی از تکنیک K-fold cross validation استفاده میشود. پیادهسازی این سیستم در محیط متلب با فایلی حاوی600 داده که دارای6 ستون، که 5 ستون آن ورودی و 1 ستون خروجی میباشد انجام شد و دارای دقت تقریباً 96% میباشد.
برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.