چکیده: تشخیص پزشکی اغلب با تخصص و تجربه کادر پزشکی انجام میشود ولی بعضی مواقع ممکن است منجر به تشخیص نادرست شود. اسکلروز چندگانه (MS) بیماری دستگاه عصبی مرکزی است. در این بیماری بدن پادتنهایی را تولید میکند که به میلین حمله کرده و آسیب میزنند. در MS غلاف میلین (که پوششی عایقی برای رشته های عصبی است) دچار مشکل میشود و صدمهی وارده به میلین در سیستمهای عصبی مرکزی، ارتباط بین مغز و اسپینال کورد و دیگر اعضای بدن را قطع میکند. مشکل عمدهای که وجود دارد ضعف در تشخیص آن است. به منظور بهبود تشخیص، از شبکه عصبی فازی (ANFIS) استفاده میشود. ایده اصلی این گونه شبکهها از شیوه کارکرد سیستم عصبی زیستی برای پردازش دادهها و اطلاعات به منظور یادگیری و ایجاد دانش الهام گرفته شده است. این سیستم از شمار زیادی عناصر پردازشی فوقالعاده بهم پیوسته به نام نورون تشکیل شده است که برای حل یک مساله با هم هماهنگ عمل میکنند. در این سیستم قسمت شبکه عصبی برای یادگیری و طبقهبندی تواناییها و نیز پیوند و اصلاح الگو به کار میرود. قسمت شبکه عصبی به طور خودکار، قواعد منطق فازی و توابع عضویت را در طول دوره تناوب یادگیری ایجاد میکند. چند روش برای آموزش شبکههای عصبی وجود دارد که در این تحقیق از روش ترکیبی استفاده میشود. شبکهی عصبی-فازی توانایی ترکیب قدرت زبانی یک سیستم فازی با قدرت عددی یک شبکه عصبی را دارد. در این شبکه برای بهینهسازی دادههای ورودی خروجی از تکنیک K-fold cross validation استفاده میشود. پیادهسازی این سیستم در محیط متلب با فایلی حاوی600 داده که دارای6 ستون، که 5 ستون آن ورودی و 1 ستون خروجی میباشد انجام شد و دارای دقت تقریباً 96% میباشد.
پیاده سازی و آموزش سیستم استنتاج عصبی-فازی تطبیقی ANFIS در متلب (MATLAB) :
یک سیستم استنتاج عصبی-فازی سازگار (adaptive neuro-fuzzy inference system یا adaptive network-based fuzzy inference system که به صورت ANFISخلاصه شده است) نوعی شبکه عصبی مصنوعی است که براساس سیستم فازی تاکاگی-سوگنو (Takagi–Sugeno) می باشد. این شیوه در اوایل ۱۹۹۰ ایجاد شده است. از آنجایی که این سیستم، شبکه های عصبی و مفاهیم منطق فازی را یکی می کند، میتواند از امکانات هر دو آنها در یک قاب بهره برد.سیستم استنتاج (inference) آن مطابق با مجموعه قوانین فازی اگر-آنگاهاست که قابلیت یادگیری برای تقریب زدن توابع غیرخطی را دارد. برای مطالعه جزییات بیشتر در مورد ANFIS کلیک کنید.
در این پروژه، با استفاده از متلب (MATLAB)، پیاده سازی سیستم استنتاج عصبی-فازی تطبیقی ANFIS به همراه توضیحات مربوطه، ارائه می گردد.
- هوش مصنوعی (۳۸۳)
- پروژه رپیدماینر(RapidMiner) (۲۶)
- پروژه وکا(Weka) (۲۰)
- پروژه نایم(Knime) (۲۰)
- پروژه پایتون(Python) (۶۴)
- پروژه R (۳۰)
- پروژه کلمنتاین(clementine) یا مدلر(IBM Spss Modeler) (۱۶)
- پروژه شبکه عصبی (۱۱۱)
- پروژه الگوریتم ژنتیک (۳۷)
- پروژه الگوریتم ممتیک (۲۲)
- پروژه الگوریتم جستجوی هارمونی (۳۰)
- پروژه تکامل تفاضلی (۳۲)
- پروژه بهینه سازی ازدحام ذرات (۳۴)
- پروژه الگوریتم کلونی زنبور عسل (۳۴)
- پروژه عقیده کاوی (۱۷)
- پروژه ماشین بردار پشتیبان (۱۴)
- مقالات (۶۲)
- پروژه الگوریتم رقابت استعماری (۱۶)
- پروژه الگوریتم درخت تصمیم (۳۹)
- پروژه سیستم ایمنی مصنوعی (۱۶)
- دریافت ویدیوهای آموزشی (۴۸)
- یادگیری عمیق(Deep Learning) (۱۴)
- پردازش تصویر (۱۰)
- پروژه الگوریتم بهینه سازی چندهدفه (NSGA-II) (۴)
- پروژه متلب(MATLAB) (۳۸)
- برنامه نویسی (۹۴)
- پروژه C شارپ (۶)
- پروژه C پلاس پلاس (۶)
- پروژه جاوا(JAVA) (۴)
- پروژه دلفی (Delphi) (۴)
- یادگیری انتقالی(Transfer Learning) (۱)
- سیستم توصیه گر (recommender system) (۴)
- شبکه کاوی(Social media mining) (۱)
- رایانش ابری (Cloud Computing) (۱۹)
- کلودسیم (CloudSim) (۱۸)
- پروژه الگوریتم فاخته (۸)
- پروژه الگوریتم خفاش (۲)
- دوره های آموزشی (۶)
- پروژه الگوریتم کرم شب تاب (۱)
- سیستم خبره (۳)
- پروژه های مشترک (۱۱)
- تدریس رایگان (۱)
-
محمد
با عرض سلام. لطفا کد ... -
Fatemeh
سلام. ممنون میشم کد NSGA-II در پایتون را برام بفرستید. -
ایمان
سلام امیدوارم که حالتون ... -
فاطمه
با سلام ممکنه کد nsga2 ... -
رضا
سلام روز بخیر چطور ... -
مهدی
سلام کد مربوط به پیاده ... -
مهدی
سلام روز بخیر چطور ... -
محمدرضا
با درود لطفا کد پایتون رو ارسال بفرمائید سپاس
- پیاده سازی پایان نامه: تحلیل احساسات برای تشخیص افسردگی با یادگیری ماشین
- پیاده سازی پایان نامه: بهبود امنیت در شبکه های اینترنت اشیا با استفاده از یادگیری ماشینی
- پیاده سازی پایان نامه: پیشبینی مصرف انرژی ساختمان با استفاده از یادگیری عمیق
- پیاده سازی پایان نامه: پیش بینی لغو هتل ها با استفاده از یادگیری ماشینی
- پیاده سازی پایان نامه: تشخیص تقلب صورت های مالی با استفاده از تکنیک های داده کاوی
- پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی
- یاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی
- پیاده سازی پایان نامه: داده کاوی برای انتخاب ویژگی در داده های بیان ژن
- پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی
- پیاده سازی پایان نامه: شناسایی موارد پرت در قیمت گذاری مسکن با تکنیک های داده کاوی
- فروردين ۱۴۰۲ ( ۱ )
- دی ۱۴۰۱ ( ۱ )
- شهریور ۱۴۰۱ ( ۱ )
- تیر ۱۴۰۱ ( ۱ )
- خرداد ۱۴۰۱ ( ۲ )
- ارديبهشت ۱۴۰۱ ( ۲ )
- فروردين ۱۴۰۱ ( ۱ )
- اسفند ۱۴۰۰ ( ۲ )
- بهمن ۱۴۰۰ ( ۱ )
- دی ۱۴۰۰ ( ۲ )
- آذر ۱۴۰۰ ( ۲ )
- آبان ۱۴۰۰ ( ۳ )
- مهر ۱۴۰۰ ( ۳ )
- شهریور ۱۴۰۰ ( ۶ )
- مرداد ۱۴۰۰ ( ۵ )
- تیر ۱۴۰۰ ( ۴ )
- خرداد ۱۴۰۰ ( ۷ )
- ارديبهشت ۱۴۰۰ ( ۸ )
- فروردين ۱۴۰۰ ( ۸ )
- اسفند ۱۳۹۹ ( ۷ )
- آذر ۱۳۹۹ ( ۱ )
- آبان ۱۳۹۹ ( ۱ )
- مهر ۱۳۹۹ ( ۳ )
- شهریور ۱۳۹۹ ( ۲ )
- تیر ۱۳۹۹ ( ۱ )
- خرداد ۱۳۹۹ ( ۶ )
- ارديبهشت ۱۳۹۹ ( ۱۳ )
- فروردين ۱۳۹۹ ( ۵ )
- اسفند ۱۳۹۸ ( ۲ )
- دی ۱۳۹۸ ( ۲ )
- آذر ۱۳۹۸ ( ۶ )
- آبان ۱۳۹۸ ( ۳ )
- مهر ۱۳۹۸ ( ۱ )
- شهریور ۱۳۹۸ ( ۶ )
- مرداد ۱۳۹۸ ( ۱۶ )
- تیر ۱۳۹۸ ( ۱۷ )
- خرداد ۱۳۹۸ ( ۱۵ )
- ارديبهشت ۱۳۹۸ ( ۷۹ )
- فروردين ۱۳۹۸ ( ۱۳۴ )
- اسفند ۱۳۹۷ ( ۴۸ )
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پیاده سازی الگوریتم ژنتیک در پایتون(Python)
- پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در پایتون(Python)
- پروژه داده کاوی تشخیص بیماری دیابت با پایتون(Python)
- پروژه داده کاوی تشخیص بیماری های قلبی با نرم افزار وکا (Weka)
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)
- پروژه داده کاوی تشخیص بیماری های قلبی با پایتون (Python)
- پروژه داده کاوی بازاریابی مستقیم (Direct marketing) با پایتون (Python)
- پروژه داده کاوی تشخیص تقلب با نرم افزار رپیدماینر (RapidMiner)
- پروژه داده کاوی تشخیص تقلب در کارت های اعتباری با نرم افزار نایم (Knime)
- پیاده سازی الگوریتم بهینه سازی چندهدفه NSGA-II در پایتون(Python)
- پروژه داده کاوی تشخیص تقلب در کارت های اعتباری با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)
- پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
- سفارش انجام پروژه تعادل بار با استفاده از الگوریتم تکامل تفاضلی در محیط رایانش ابری (CloudSim)
- بهینه سازی ساختار شبکه عصبی با الگوریتم ممتیک برای داده کاوی امتیاز اعتباری
- پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری با زبان R
- سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم ژنتیک
- پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی
- پروژه داده کاوی تشخیص تقلب با نرم افزار رپیدماینر (RapidMiner)
- پروژه داده کاوی تشخیص تقلب با نرم افزار نایم (Knime)