۱۱۲ مطلب با موضوع «پروژه شبکه عصبی» ثبت شده است

پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی

پیاده سازی مقاله: یش بینی قیمت سهام با استفاده از شبکه عصبی مصنوعی

چکیده:

شبکه های عصبی مصنوعی مدل هایی ریاضی می باشند که الهام گرفته از سیستم عصبی و مغز انسان می باشند. در این مقاله سعی محقق بر آن است که به پیش بینی قیمت سهام روز بعد در بورس اوراق بهادار تهران با استفاده از مدل پرسپترون چندلایه از شبکه های عصبی مصنوعی بپردازد؛ و با روش های مختلف سعی شود خطای این پیش بینی را بهبود بخشد. متغیرهای بسیار زیادی در قیمت سهام تاثیر گذار می باشند که در این میان سهم شاخص های اقتصادی عمده را می توان بسـیار بالا دانست، که نرخ ارز (شـامل نرخ دلار آمریـکا و یورو)، قـیمت طـلا و قیمت نفت از آن جمله می باشند. همچنین شاخص کل نیز به عنوان نماینده ای از کل شرکت های پذیرفته شده در بورس اوراق بهـادار تهـران در نظر گرفته می شود، که این شاخص ها به عـنوان متغـیرهای مستقل جهت پیش بینی قیمت سهام مورد استفاده قرار گرفته اند.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی مشکلات ارتوپدی

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم ممتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک(Memetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری

سفارش انجام پروژه تشخیص فرار مالیاتی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:

فرار مالیاتی یا گریز از مالیات (Tax evasion) به هر گونه تلاش قانونی یا غیرقانونی یک شرکت به منظور طفره رفتن و گریختن از پرداخت مالیات یا کمتر پرداخت نمودن آن، به هر شیوه که انجام شود، گفته می‌شود. در سال های اخیر تکنیک های داده کاوی برای ارائه ی ابزارهای مؤثر برای تقویت کارآیی و اثربخشی تشخیص فرار مالیاتی مورد توجه قرار گرفته اند. تکنیک های داده کاوی قادر به شناسایی الگوهای خاص و مطابقت آن با داده های جدید می باشد و از این طریق می تواند برای کاهش یا به حداقل رساندن ضرر و زیان ناشی از فرار از مالیاتی مورد استفاده قرار بگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص فرار مالی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به تشخیص فرار مالیاتی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی بیماری قلبی

سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی مشکلات ارتوپدی

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه تشخیص اسپم با استفاده از تلفیق شبکه ی عصبی و الگوریتم تکامل تفاضلی

سفارش انجام پروژه تشخیص اسپم با استفاده از تلفیق شبکه ی عصبی و الگوریتم تکامل تفاضلی:

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، متن های حاوی پیام های اسپم شناسایی و فیلتر خواهند شد. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ژنتیک برای داده کاوی بیماری کلیوی

سفارش انجام پروژه داده کاوی تشخیص بیماری کلیوی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

کلیه یکی از اندام‌های درونی بدن انسان و برخی دیگر از جانداران است. کار کلیه تصفیه خون از مواد زائد و دفع متابولیت‌های بدن می‌باشد جالب است بدانید انسان می‌تواند با ۲۰٪ کلیه‌هایش زندگی نسبتاً سالمی داشته باشد. کلیه نقش مهمی در دفع مواد زائد و تعادل آب و الکترولیتها در بدن دارد. نارسایی حاد کلیوی در اثر تخریب کلیه‌ها پدید می‌آید و با فقدان سریع عملکرد کلیوی مشخص می‌شود. این بیماری منجر به ناهنجاری‌های الکترولیتی و بر پایه اسید و احتباس فراورده‌های زاید نیتروژنی از قبیل اوره و کراتینین می‌گردد. برای مطالعه جزییات بیشتر در مورد کلیه و بیماری های آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (genetic algorithm)، مجموعه داده های مربوط به بیماری کلیوی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی بازاریابی مستقیم

سفارش انجام پروژه داده کاوی بازاریابی مستقیم به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

بازاریابی مستقیم (Direct Marketing) یعنی استفاده از کانال های مستقیم مصرف کننده، برای رساندن و تحویل کالاها و خدمات به مشتریان بدون استفاده از واسطه های بازاریابی. این کانال ها شامل پست مستقیم، کاتالوگ ها، بازاریابی تلفنی، تلویزیون تعاملی، دکه ها، وب سایت ها، و تجهیزات همراه می شوند. بازاریاب های مستقیم به دنبال یک پاسخ قابل اندازه گیری، مثل سفارش مشتری هستند. برای مطالعه جزییات بیشتر در مورد بازاریابی مستقیم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بازاریابی مستقیم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم ممتیک برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم ممتیک:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ممتیک (memetic algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه تشخیص اسپم با استفاده از تلفیق شبکه ی عصبی و الگوریتم جستجوی هارمونی

سفارش انجام پروژه تشخیص اسپم با استفاده از تلفیق شبکه ی عصبی و الگوریتم جستجوی هارمونی:

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی(harmony search algorithm)، متن های حاوی پیام های اسپم شناسایی و فیلتر خواهند شد. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با روش بهینه سازی ازدحام ذرات برای داده کاوی تشخیص نفوذ در شبکه های کامپیوتری

سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم ژنتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

تخمین زده می شود که تقریباً 10 درصد از نوزادان در هنگام تولد به نوعی کمک برای تنفس نیاز دارند. با هدف پیشگیری از مرگ و میر نوزادان، در این تحقیق پیش بینی نیاز به احیای نوزاد با توجه به برخی شرایط سلامت نوزاد و مادر و همچنین ویژگی های بارداری و زایمان با استفاده از مدل های داده کاوی انجام می شود.

  • شریف پژوه

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی زمان بندی کار ها

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی زمان بندی کار ها 

مسئله ی زمان‌بندی کارها (Job shop scheduling) یک مسئلهی بهینه‌سازی علوم رایانه و تحقیق در عملیات است که در آن کار های ایده‌آل به منابع در زمان‌های خاصی نسبت داده می‌شوند. در این مسئله n کار j1, j2, …, jn با اندازه‌های متفاوت که باید روی m ماشین یکسان زمان‌بندی شوند در تلاشند تا زمان کل(makespan)  را به حداقل برسانند. زمان کل مجموع زمان لازم برای انجام همه ی کار است. امروزه، این مسئله به عنوان یک مسئله ی پویا مطرح می‌شود، که با ارائه شدن هر کار، الگوریتم پویا باید با اطلاعات موجود تصمیم‌گیری کند قبل از اینکه کار بعدی مطرح شود.

در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای حل مسئله ی زمان بندی کار ها ارائه می شود.

  • شریف پژوه

پیاده سازی مقاله: استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

پیاده سازی مقاله: استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

چکیده:

با توجه به محدودیت منابع ، تخصیص بهینه منابع یک ضرورت به حساب می اید. در تحقیق حاضر به مدل سازی رفتار اعتباری مشتریان با استفاده از شبکه های عصبی جهت تخصیص بهینه منابع و ارتقاء کیفیت خدمات تسهیلات بانک های کشور پرداخته شده است در ادامه، مشتریان تسهیلات اعتباری ساخت مسکن در شهر تهران به سه دسته خوش حساب، سررسید گذشته و بدحساب تقسیم شده، متغیرهای تاثیرگذار بر رفتار اعتباری انهخا شناسایی گردی. سپس داده های تاریخی متناظر ، جمع اوری و به دو مجموعه اموزشی و تست، تقسیم گردید. در مرحله بعد، پس از طراحی مدل های رتبه بندی اعتباری، این مدل ها با داده های آموزشی ، آموزش داده شدند. در نهایت با مجموعه داده های تست، مورد ازمون قرار گرفتند. نتایج بدست امده حاکی از آن است که رفتار اعتباری مشتریان با استفاده از مدل های رتبه بندی شبکه های عصبی قابل پیش بینی است. همچنین مدل آنالیز ممیزی با همان داده های تاریخی اجرا گردید. مقایسه بین قدرت تفکیک مدل های شبکه عصبی و مدل آنالیز ممیزی ، نشان می دهدکه مدل های رتبه بندی اعتباری شبکه های عصبی نسبت به مدل آنالیز ممیزی از قدرت تفکیک یا دقت پیش بینی بیشتری برخوردار هستند.

دریافت مقاله:

 لینک مقاله

دریافت پیاده سازی:

برای دریافت پیاده سازی مقاله مورد نظر، و یا اعمال بهبود در آن، با استفاده از لینک زیر، سفارش خود را ارسال نمایید.

سفارش انجام پروژه

  • شریف پژوه

ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم ماشین بردار پشتیبان، جنگل و درخت تصمیم

پیاده سازی مقاله: ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم های ماشین بردار پشتیبان، جنگل و درخت تصمیم

چکیده:

امروزه بیماری مزمن کلیه یکی از مهمترین بیماریهای رایج بین افراد جامعه بخصوص بزرگسالان است. این بیماری در واقع نوعی مرگ خاموش محسوب میشود زیرا این بیماری از دسته بیماریهای مزمن است و یکباره فرد به این بیماری مبتلا نمی شود و ممکن است، سالهای سال مبتلا به این بیماری باشد بدون اینکه کوچکترین علائمی از خود نشان دهد و زمانی علائم خود را بروز دهد که به بدترین وضعیت بیماری برسد و منجر به خطر افتادن جان بیمار یا صرف هزینه های بسیاری برای دیالیز یا پیوند کلیه های بیمار شود. هدف این پژوهش ارائه مدل هوشمند برای کمک به شناسایی و تشخیص بیماری کلیه با استفاده از روشها و الگوریتم های یادگیری ماشین و داده کاوی برروی مجموعه داده کلیه دانشگاه کلیولند کالیفرنیا است. در این تحقیق برای ساخت مدل پیشبینی در ابتدا مجموعه داده اصلی را به دو مجموعه داده آموزش/ ارزیابی و مجموعه داده آزمایش تقسیم کردیم. به کمک مجموعه داده آموزش/ارزیابی با استفاده از روش اعتبار سنجی متقابل fold-10 و الگوریتم های درخت تصمیم، جنگل تصادفی و ماشین بردار پشتیبان مدل را ایجاد کرده و دقت نهایی مدل در این پژوهش را به کمک مجموعه داده آزمایش ارزیابی کرده ایم. در انتها نتایج بدست آمده با الگوریتم های جنگل تصادفی و ماشین بردار پشتیبان با دقت های 89,98 %بالاترین دقت را دراین پژوهش حاصل کرده است.

  • شریف پژوه

پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

چکیده:

استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.

  • شریف پژوه
موضوعات
Latest Posts
Archive