پیاده سازی الگوریتم بهینه سازی ازدحام در زبان R:
الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دستههای پرندگان مدل شدهاست. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری میشوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر میگذارد. نتیجهٔ مدلسازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل میکنند. ذرات از یکدیگر میآموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود میروند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفتهاست و بهترین مکانی که در کل همسایگیاش وجود دارد، تنظیم میکند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.
در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، ارائه می گردد.
موارد قابل تحویل:
- فایل های شبیه سازی مربوط در زبان R
- مستندات پروژه، شامل توضیحات مربوط به فعالیت های صورت گرفته
- فایل ارائه ی پاورپوینت
- فیلم آموزشی برای آشنایی دقیق تر با فرآیند پیاده سازی
- مجموعه داده ی مورد استفاده در پروژه
- امکان آماده سازی این پروژه با سایر زبان ها، نظیر جاوا، ++C، پایتون، #C، دلفی، متلب، انواع بیسیک، زبان های سمت سرور نظیر PHP و ... فراهم است.