۲۱۸ مطلب با کلمه‌ی کلیدی «داده کاوی» ثبت شده است

پیاده سازی پایان نامه: پیش‌بینی مصرف انرژی ساختمان با استفاده از یادگیری عمیق

پیاده سازی پایان نامه: پیش‌بینی مصرف انرژی ساختمان با استفاده از یادگیری عمیق

نسبت بالای انرژی مصرف شده در ساختمان ها باعث بروز مشکلات زیست محیطی بسیاری شده است که اثرات نامطلوبی بر موجودیت بشر ایجاد می کند. پیش‌بینی مصرف انرژی ساختمان اساساً به عنوان روشی برای حفظ انرژی و بهبود تصمیم‌گیری در جهت کاهش مصرف انرژی اعلام می‌شود. ساخت ساختمان های کارآمد انرژی به کاهش کل انرژی مصرفی در ساختمان های جدید کمک می کند. روش یادگیری عمیق که به عنوان یکی از بهترین روش های تولید نتایج مطلوب در کار پیش بینی شناخته شده است در این تحقیق برای پیش بینی مصرف انرژی ساختمان به کار می رود.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی لغو هتل ها با استفاده از یادگیری ماشینی

پیاده سازی پایان نامه: پیش بینی لغو هتل ها با استفاده از یادگیری ماشینی

لغو اتاق یک چالش بزرگ برای صنعت هتلداری است زیرا تعداد مهمانان بر کل تنظیمات عملیاتی تأثیر می گذارد. هدف از این تحقیق پیش بینی لغو هتل ها با استفاده از یادگیری ماشین و تجزیه و تحلیل عواملی است که بیشترین تأثیر را دارند. در این تحقیق راهکاری مبتنی بر تکنیک های داده کاوی و یادگیری ماشین برای حل این مسئله ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص تقلب صورت های مالی با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: تشخیص تقلب صورت های مالی با استفاده از تکنیک های داده کاوی

بررسی تقلب مالی در واقع یکی از موضوعات چالش برانگیز است با توجه به این که پیامدهای اقتصادی و اجتماعی ناشی از تقلب می تواند گسترده باشد. به این ترتیب تقلب مالی در حال تبدیل شدن به یک مشکل جدی است و در نتیجه، شناسایی موثر تقلب حسابداری همیشه یک کار مهم اما نسبتاً پیچیده برای متخصصان حسابداری بوده است. در این تحقیق راهکاری مبتنی بر تکنیک های داده کاوی برای حل این مسئله ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

تخمین زده می شود که تقریباً 10 درصد از نوزادان در هنگام تولد به نوعی کمک برای تنفس نیاز دارند. با هدف پیشگیری از مرگ و میر نوزادان، در این تحقیق پیش بینی نیاز به احیای نوزاد با توجه به برخی شرایط سلامت نوزاد و مادر و همچنین ویژگی های بارداری و زایمان با استفاده از مدل های داده کاوی انجام می شود.

  • شریف پژوه

یاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی

بهداشت و درمان به یکی از بزرگترین صنایع در سطح جهان تبدیل شده است و به همین دلیل منابع زیادی را مصرف می کند. در سال‌های اخیر بستری مجدد در بیمارستان به دلیل هزینه‌های غیرضروری در سیستم مراقبت‌های بهداشتی به موضوعی قابل توجه تبدیل شده است. بسیاری از بستری‌های مجدد قابل پیشگیری به کیفیت پایین مراقبت در طول اقامت بیمار در بیمارستان و همچنین به ضعیف فرآیند ترخیص مربوط می‌شود. در سال های اخیر به کارگیری تکنیک های داده کاوی توانسته مداخلات موثر و پیشگیرانه را برای آن اجرا کند.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی

پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی

با رشد سریع اینترنت، حملات سایبری به شبکه ها و سیستم های رایانه ای نیز به سرعت افزایش یافته است. به عنوان یک اقدام احتیاطی در برابر این حملات، سیستم‌های تشخیص نفوذ (IDS) در سیستم‌های شبکه مستقر شده‌اند. سیستم‌های تشخیص نفوذ بخشی از دومین خط دفاعی یک سیستم هستند.. آن ها را می توان همراه با سایر اقدامات امنیتی مانند کنترل دسترسی، مکانیسم های احراز هویت و تکنیک های رمزگذاری به منظور ایمن سازی بهتر سیستم ها در برابر حملات سایبری مستقر کرد. استفاده از ترکیب تکنیک های داده کاوی راهکاری برای ارائه ی یک سیستم تشخیص نفوذ موثر می باشد.

  • شریف پژوه

پیاده سازی پایان نامه: شناسایی موارد پرت در قیمت گذاری مسکن با تکنیک های داده کاوی

پیاده سازی پایان نامه: شناسایی موارد پرت در قیمت گذاری مسکن با تکنیک های داده کاوی

با توجه به اینکه برای افراد شناخت تغییر و تحول هایی که در آینده رخ می دهد اهمیت فراوانی دارد موضوعاتی که پیرامون پیش بینی می باشد برای افراد مورد توجه است. از جمله مواردی که در این بین اهمیت فراوانی دارد موضوعات پیرامون مسائل مالی از جمله پیش بینی قیمت مسکن می باشد. هدف از این تحقیق ارائه ی مدلی برای پیش بینی قیمت مسکن و پس از آن شناسایی موارد پرت در قیمت گذاری های انجام شده در این حوزه است.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص احتمالات مشکوک به پولشویی با استفاده از تکنیک های داده‌کاوی

پیاده سازی پایان نامه: تشخیص احتمالات مشکوک به پولشویی با استفاده از تکنیک های داده‌کاوی

در سال های اخیر موضوع پولشویی یکی از مباحث مهم اقتصادی می باشد که معضلات فراوانی را برای شرکت های کوچک و بزرگ ایجاد کرده است. از این رو راهکار های متعددی برای حل این مشکل در سراسر جهان پیشنهاد شده است. با توجه به گستردگی داده های موجود در این زمینه یکی از راهکار های حل این مسئله استفاده از تکنیک های داده کاوی می باشد.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی میزان بارش فصلی و ماهیانه براساس داده کاوی

پیاده سازی پایان نامه: پیش بینی میزان بارش فصلی و ماهیانه براساس داده کاوی

داده‌کاوی هواشناسی شکلی از داده‌کاوی است که به یافتن الگوهای پنهان در داده‌های هواشناسی که تا حد زیادی در دسترس است می‌پردازد، به طوری که اطلاعات بازیابی شده می‌تواند به دانش قابل استفاده تبدیل شود. آب و هوا یکی از داده های هواشناسی است که سرشار از دانش مهم است. مهمترین عنصر اقلیمی که بر بخش های مختلف مانند کشاورزی تأثیر می گذارد، بارندگی است. بنابراین پیش‌بینی بارندگی در کشورهای مختلف به یک موضوع مهم تبدیل شده است. در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای پیش بینی بارندگی ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی پیش بینی قیمت سهام

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی پیش بینی قیمت سهام 

سرمایه گذاری در سهام عرضه شده در بورس اوراق بهادار یکی از گزینه های پرسود در بازار سرمایه است. با این وجود بازار سهام دارای سیستمی غیر خطی و آشوب گونه است که تحت تاثیر شرایط سیاسی، اقتصادی و روانشناسی می باشد. از این رو نحوه ی مدیریت و پیش بینی قیمت سهام برای سرمایه گذاران در بازار سهام اهمیت فراوانی دارد. برای حل مسئله ی پیش بینی قیمت سهام می توان از سیستم های هوشمند غیرخطی استفاده نمود. در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای حل این مسئله ارائه می شود.

  • شریف پژوه

پیاده سازی مقاله: پردازش موازی در داده کاوی

پیاده سازی مقاله: پردازش موازی در داده کاوی

چکیده:

با افزایش انفجار گونه داده های بزرگ در زمینه های صنعتی و علمی، برای کار بر روی این داده ها و تجزیه و تحلیل آنها، سیستم های پردازش داده های بزرگ بسیار ضروری به نظر می رسد. مپ ریدوس و اسپارک دو محدوده محاسبات خوشه ای بسیار محبوب برای تجزیه و تحلیل داده ها در مقیاس بزرگ هستند، در حال حاضر مسلما اسپارک از لحاظ ویژگی هایی مانند تحمل خطا، عملکرد بالای پردازش داده ها در حافظه و مقیاس پذیری، جزء پیشرفته ترین سیستم های محاسباتی داده های بزرگ می باشد. اسپارک یه مدل برنامه ریزی آردیدی (مجموعه داده های توزیع شده) را در اختیار شما قرار می دهد، مدل برنامه نویسی با مجموعه ای از تحول ارائه شده و اپراتورهایی که عملکرد عملیات را می توان توسط کاربران با توجه به برنامه های خود را سفارشی کنند. اسپارک در اصل به عنوان یک سیستم پردازش سریع و کلی ارائه شده است که با توجه به شرایط مختلف از زمان معرفی آن، تلاش زیادی برای انجام کارهای تحقیقاتی روی آن انجام شده است. در این مقاله ما دلایل اهمیت داده پردازی موزای را بررسی نمودیم و در نهایت دو مدل محاسباتی مپ ریدوس و اسپارک را بعنوان ابزارهای رایج و مهم دادهپردازی موازی، بررسی و در مواردی با هم مقایسه نمودیم. در این بررسی نهایتا مشخص شد، بجز عملیات مرتب سازی، اسپارک گزینه بهتری برای داده کاوی موازی است.

  • شریف پژوه

پیاده سازی مقاله: تحلیل سبد خرید مشتریان در خرید اینترنتی با استفاده از تکنیک های داده کاوی

پیاده سازی مقاله: تحلیل سبد خرید مشتریان در خرید اینترنتی با استفاده از تکنیک های داده کاوی

چکیده:

در این مقاله عملیات برخی خریدها با انتخاب تصادفی در یک سایت بازاریابی مورد بررسی قرار می گیرد.این خریدها در فضای بیکران اینترنت که مجموعه ای بسیار بزرگ از شبکه های بزرگ و کوچک به هم پیوستهاست ، انجام می گیرد . اگر به جای رفتن به محیط بیرون از خانه و خرید از فروشگاههای سنتی و مدرن ، با استفاده از اینترنت خرید خود را انجام دهید خرید اینترنتی صورت گرفته است که هزینه آن به صورت آنلاین پرداخت می شود و یا مامور پست کالا را جلوی منزل به مشتری تحویل می دهد و هزینه کالا را پس از تحویل از مشتری دریافت می کند .سبد خرید مشتری شامل کالاهایی است که مشتری از یک فروشگاه اینترنتی خریده است .یعنی ممکن است یکباره چندین کالا خریده باشد .داده کاوی مجموعه ای از روشها در فرآیند کسب دانش است که برای تشخیص الگوها و رابطه های نامعلوم در داده ها مورد استفاده قرار می گیرد . فروش بازاریاب سایت ایران سی نت به عنوان موردانجام شد .در این مقاله سعی weka مطالعه فرض شده است . فرآیند داده کاوی در این پژوهش با استفاده از نرم افزار شده تا رابطه بین خرید چند کالا بررسی شود و پیشنهاد دهیم که اگر یکی از آنها را مشتری خرید ، با استفاده از قوانین کشف شده چه کالاهای دیگری را می تواند انتخاب کند .

  • شریف پژوه

پیاده سازی مقاله: تاثیر انتخاب اپراتور برNSGA_III در بهینه سازی بیش هدفه- چند هدفه و تک هدفه

پیاده سازی مقاله: تاثیر انتخاب اپراتور برNSGA_III در بهینه سازی بیش هدفه- چند هدفه و تک هدفه

چکیده:

الگوریتم مناسب ژنتیک طبقه بندی شده (NSGA_III) یک الگوریتم بهینه چندگانه می باشد که با استفاده از چند جهت مرجع از پیشتعریف شده و در عین حال سازگار به حفظ تنوع در میان راه حل های آن است. خصوصا طراحی حل مسایل چندگانه ای که دارای چهاریا بیشتر تابع هدف است. محدودیتی وجود دارد که مانع از استفاده NSGA_III به مسایل بهینه سازی تک هدفه که در آن تنها یکجهت مرجع وجود دارد شده است که برای این منظور یک الگوریتم یکپارچه U_ NSGA_III به تازگی طراحی شده تا مطالعه اینمقاله را به عهده گیرد.U_ NSGA_III قابلیت تطبیق دهی خودکار به ابعاد شکل را دارد.به هر حال طراحان در این مقاله امکان چشم پوشی از محدودهNSGA_III و استفاده از ارزیابی عملکرد چند گانه برای حل مسایل چند گانه ، ضربه دری و تکی را داریم.در اینجا عملکرد ارزیابی روی یک سری مسایل چند گانه ،ضربه دری ، تکی ثابت و غیر ثابت به این منظورانجام می شوند که ضعفو عیب NSGA_III چند رشته ای در مقایسه با U_ NSGA_III بررسی شوند نقطه قوت NSGA_III در هر نوع مساله نیز شرحداده شده است این مطاله یک ارزیابی مقایسه ای در مورد روند کاری NSGA_III اصلی فراهم می کند.
  • شریف پژوه

پیاده سازی مقاله: ارائه یک سیستم توصیه گر برای استخراج اطلاعات موردنیاز کاربران در زمینه املاک با استفاده از وب کاوی

پیاده سازی مقاله:  ارائه یک سیستم توصیه گر برای استخراج اطلاعات موردنیاز کاربران در زمینه املاک با استفاده از وب کاوی

چکیده:

با رشد تکنولوژی در عصر امروزی و اهمیت و صرفه جویی در وقت و هزینه،تجارت الکترونیکی یکی از ضرورت های تجاری محسوب می شود.رشد روز افزون بنگاه های تجاری گوناگون بر روی وب،باعث دشوار شدن انتخاب مشتریان گردیده است.با توجه به فضای رقابتی موجود در وب سایت های مختلف و فروشگا های تجاری موجود،لزوم استفاده از ابزاری که سبب جذب بیشتر مشتریان و رضایتمندی آنان گردد و نیز از سردرگمی آنان در میان حجم عظیم اطلاعات جلوگیری کرده و آنان را در دسترسی سریعتر به هدف،یاری نماید،بیش از پیش احساس می شود.یکی از ابزارهای موثر در تجارت الکترونیک،سیتم های توصیه گر می باشند.سیستم های هوشمندی که به ارائه ی پیشنهادات شخصی سازی شده به کاربران،سبب ترغیب آنان به خرید از وب سایت ها یا فروشگاه های آنلاین میشوند.به طور کلی سیستم های توصیه گر یا پیشنهاد دهنده سیتم هایی هستند که با یکسری از روش های داده کاوی و وبکاوی و خصوصیاتی مانند جستجوی کاربران در گذشته یا امتیازاتی که سایر کاربران به اقلام مورد بازدید در گذشته داده اند،می توانند پیشنهاد های مناسبی را به کاربران ارئه دهند.در این تحقیق به ارائه روشی جهت بهبود سیتم های توصیه گر درزمینه املاک پرداخته می شود که طی تحقیقات صورت گرفته این سیستم می تواند تا 90 درصد به درستی نیازهای کاربران در زمینه املاک را به درستی تخیص داده وپیشنهادات مناسبی را به کاربر ارائه دهد کی می تواند مورد علاقه وی باشند.

  • شریف پژوه

سفارش انجام پروژه داده کاوی فرآیند ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی

سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:

 

رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده می‌شود. سازمان‌ها و شرکت‌هایی مانند بانک‌ها، شرکت‌های مخابراتی، ارائه‌دهندگان خدمات اینترنتــی (ISP)، شرکت‌های تلویزیون کابلی، شرکت‌های بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان به‌عنوان یکی از معیارهای کلیدی سنجش در کسب‌وکار استفاده می‌کنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاه‌های اقتصادی، اغلب واحدها و بخش‌هایی به نام خدمات مشــتریان دارند که سعی می‌کنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق می‌کنند. برای مطالعه ی بیشتر کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی

پیاده سازی مقاله تشخیص تقلب در سیستم های پرداخت الکترونیکی بانک ها با استفاده از داده کاوی: 

 
چکیده: 
یکی از چالشهای تشخیص تقلب در حوزه سیستم های پرداخت الکترونیکی، تنوع و تغییر مداوم شیوههای تقلب است لذا نیاز به روش های تشخیص تقلب با کارایی و دقت باال به روشنی قابل درک است. در این پژوهش روش داده کاوی رگرسیون لجستیک، شبکه عصبی BP و شبکه عصبی GMDH برای ساخت مدلهایی جهت شناسایی تقلب در تراکنشهای مالی دستکاه خودپرداز یک بانک پیاده سازی شدند. در ادامه، این روشها برروی دادههای واقعی آزمایش و کارایی هر روش سنجیده شد. روش شبکه عصبی GMDH با دقت 19.37 درصد در شناسایی تقلب یا غیرتقلب بودن تراکنشهای مالی بهترین کارایی را در مقایسه با دو روش رگرسیون لجستیک با دقت کلی 98.63 و شبکه عصبی BP با دقت کلی 0..34داشت. باتوجه به نتایج بدست آمده روش پیشنهادی در تشخیص تقلب نسبت به دو روش دیگر با دقت بیشتری عمل کرده است.

  • شریف پژوه

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی

پیاده سازی مقاله بهبود تشخیص نفوذ براساس کاهش ویژگی و با استفاده از داده کاوی: 

 
چکیده: 

در سیستمهای تشخیص نفوذ، با داده های حجیم برای تحلیل مواجه هستند. بررسی مجموعه داده سیستمهای تشخیص نفوذ نشان می دهد که بسیاری از ویژگیها، ویژگیهای غیرمفید، بی تاثیر در سناریوهای حمله و یا ویژگیهای نامربوط هستند. بنابراین حذف ویژگیهای نامناسب از مجموعه ویژگی، به عنوان یک راهکار مناسب برای کاهش مجموعه داده سیستمهای تشخیص نفوذ معرفی می شود. نیازمندی دیگری که در سیستمهای تشخیص نفوذ مطرح می باشد، دانستن مجموعه ویژگی بهینه برای هر نوع حمله است. چرا که در اینصورت، سیستم تشخیص نفوذ قادر خواهد بود برای تشخیص هر نوع حمله، تنها از مجموعه ویژگی متناسب با آن حمله استفاده کند. در این تحقیق، روشی ارایه می شود که قادر است تمام نیازمندیهای فوق را پاسخگو باشد، علاوه بر این، این روش نحوه ارتباط بین ویژگیها را برای تحلیل بهتر آنها نشان می دهد. روش پیشنهادی از مفاهیم داده کاوی و تحلیل شبکه های اجتماعی استفاده می نماید.

 

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه پیش بینی نرخ جرم و جنایت با استفاده از تلفیق درخت تصمیم و الگوریتم سیستم ایمنی مصنوعی

سفارش انجام پروژه پیش بینی نرخ جرم و جنایت با تلفیق روش های درخت تصمیم و الگوریتم سیستم ایمنی مصنوعی:

 

با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم سیستم ایمنی مصنوعی (Artificial immune system algorithm)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی تشخیص سرطان با زبان R

سفارش انجام پروژه داده کاوی تشخیص سرطان:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از زبان R، مجموعه داده های مربوط به سرطان (انواع سرطان) مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات
Archive