دریافت ویدیوی آموزشی الگوریتم بهینه سازی چندهدفه (NSGA-II)

برای نمایش مطلب باید رمز عبور را وارد کنید
  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با روش ازدحام ذرات برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری

سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

با توجه به اهمیت نقش نرم‌افزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرم‌افزار در سال‌های اخیر، گسترش زیادی داشته است. خطاهای پیش‌بینی نشده ی نرم‌افزاری هزینه‌های زیادی را مصرف کننده ها، تحمیل می‌کند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستم‌های با کیفیت بالا متمرکز شده‌اند. مهم ترین مولفه در سیستم نرم‌افزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرم‌افزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی بیماری قلبی

سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات: 

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی تشخیص اسپم با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)

سفارش انجام پروژه داده کاوی تشخیص اسپم:

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از نرم افزار کلمنتاین(clementine) یا مدلر(IBM Spss Modeler)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در زبان R

پیاده سازی الگوریتم بهینه سازی ازدحام در زبان R:

الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده‌است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز هم‌زمان پرندگان و تغییر ناگهانی مسیر آن‌ها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری می‌شوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد. نتیجهٔ مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند. ذرات از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته‌است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.

در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پروژه داده کاوی تشخیص اسپم با پایتون (Python)

سفارش انجام پروژه داده کاوی تشخیص اسپم با پایتون (Python):

به سوءاستفاده از ابزارهای الکترونیکی مانند ایمیل، مسنجر، گروه‌های خبری ایمیلی، فکس، پیام کوتاه و... برای ارسال پیام به تعداد زیاد و به صورت ناخواسته اسپم می‌گویند. با توجه به هزینه اندک این روش نسبت به پست سنتی که در گذشته برای ارسال پلاک به پلاک تبلیغات مورد استفاده قرار می‌گرفت و همچنین ناقص بودن قوانین بین‌المللی برای محدود کردن هرزنامه، در حال حاضر اسپم ها در سطح وسیعی ارسال می‌شوند. امروزه اسپم‌ها به‌طور عمده با هدف‌های تجاری منتشر می‌شوند ولی اسپم‌های غیرتجاری مانند اسپم های سیاسی یا مذهبی نیز روز به روز در حال افزایش هستند. برای مقابله با اسپم ها تاکنون روش‌های متعددی ایجاد شده است و این روند با توجه به ابعاد گسترده آن، همچنان ادامه دارد. برای مطالعه جزییات بیشتر در مورد تشخیص اسپم کلیک کنید.

در این پروژه، با استفاده از پایتون (Python)، مجموعه داده های مربوط به تشخیص اسپم مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی بازاریابی مستقیم

سفارش انجام پروژه داده کاوی بازاریابی مستقیم به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

بازاریابی مستقیم (Direct Marketing) یعنی استفاده از کانال های مستقیم مصرف کننده، برای رساندن و تحویل کالاها و خدمات به مشتریان بدون استفاده از واسطه های بازاریابی. این کانال ها شامل پست مستقیم، کاتالوگ ها، بازاریابی تلفنی، تلویزیون تعاملی، دکه ها، وب سایت ها، و تجهیزات همراه می شوند. بازاریاب های مستقیم به دنبال یک پاسخ قابل اندازه گیری، مثل سفارش مشتری هستند. برای مطالعه جزییات بیشتر در مورد بازاریابی مستقیم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به بازاریابی مستقیم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم هارمونی

سفارش انجام پروژه تشخیص نفوذ در شبکه های کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:


سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با تکامل تفاضلی برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری

سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

با توجه به اهمیت نقش نرم‌افزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرم‌افزار در سال‌های اخیر، گسترش زیادی داشته است. خطاهای پیش‌بینی نشده ی نرم‌افزاری هزینه‌های زیادی را مصرف کننده ها، تحمیل می‌کند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستم‌های با کیفیت بالا متمرکز شده‌اند. مهم ترین مولفه در سیستم نرم‌افزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرم‌افزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی بیماری قلبی

سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی پیش بینی نرخ جرم و جنایت با پایتون (Python)

سفارش انجام پروژه داده کای یش بینی نرخ جرم و جنایت با  پایتون:

با گسترش روزافزون سیستم های کامپیوتری، تحلیلگران اطلاعات می توانند به روند حل جرم و جنایات سرعت بخشند و از این طریق به اجرای قانون کمک کنند. تجزیه و تحلیل و پیشگیری از جرم رویکردی برای شناسایی و تحلیل الگوها و روند جنایت است. در این پروژه اطلاعات ناشناخته و مفید از داده های بدون ساختار استخراج می شود و مناطقی که احتمال وقوع جرم و جنایت در آن ها وجود دارد، پیش بینی می شود.

در این پروژه، با استفاده از پایتون (Python)، مجموعه داده های مربوط به پیش بینی نرخ جرم و جنایت مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی بیماری دیابت

سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین می‌رود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمی‌تواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلول‌های بتا در پانکراس منجر به نقص تولید انسولین می‌شود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلول‌های بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی هارمونی برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی (harmony search algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی هارمونی برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی (harmony search algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه چند وزیر (هشت وزیر) با الگوریتم ژنتیک در متلب

پروژه هشت وزیر با الگوریتم های تکاملی در متلب:

مسئله چند وزیر یک معمای شطرنجی و ریاضیاتی است که بر اساس آن باید n وزیر شطرنج در یک صفحه n×n شطرنج به‌گونه‌ای قرار داده شوند که هیچ‌یک زیر ضرب دیگری نباشند. با توجه به اینکه وزیر به‌صورت افقی، عمودی و اُریب حرکت می‌کند، باید هر وزیر را در طول، عرض و قطر متفاوتی قرار داد. اولین و مشهورترین شکل این مسئله معمای هشت وزیر است که برای حل آن باید ۸ وزیر را در یک صفحهً معمولی (۸×۸) شطرنج قرار داد. این مسئله ۹۲ جواب دارد که ۱۲ جواب آن منحصر به‌فرد است یعنی بقیه جواب‌ها از تقارن جواب‌های اصلی به‌دست می‌آید. برای مطالعه ی بیشتر کلیک کنید.

در این پژوه به کمک روش تکاملی ژنتیک، مسئله ی هشت وزیر در محیط متلب (Matlab) پیاده سازی شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم جستجوی هارمونی برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم جستجوی هارمونی:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی هارمونی (harmony search algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات
Archive