۹۴ مطلب با موضوع «برنامه نویسی» ثبت شده است

پیاده سازی الگوریتم ژنتیک در متلب(MATLAB)

پیاده سازی الگوریتم ژنتیک در متلب(MATLAB):

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از متلب، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در زبان R

پیاده سازی الگوریتم بهینه سازی ازدحام در زبان R:

الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده‌است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز هم‌زمان پرندگان و تغییر ناگهانی مسیر آن‌ها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری می‌شوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد. نتیجهٔ مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند. ذرات از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته‌است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.

در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پروژه چند وزیر (هشت وزیر) با الگوریتم ژنتیک در متلب

پروژه هشت وزیر با الگوریتم های تکاملی در متلب:

مسئله چند وزیر یک معمای شطرنجی و ریاضیاتی است که بر اساس آن باید n وزیر شطرنج در یک صفحه n×n شطرنج به‌گونه‌ای قرار داده شوند که هیچ‌یک زیر ضرب دیگری نباشند. با توجه به اینکه وزیر به‌صورت افقی، عمودی و اُریب حرکت می‌کند، باید هر وزیر را در طول، عرض و قطر متفاوتی قرار داد. اولین و مشهورترین شکل این مسئله معمای هشت وزیر است که برای حل آن باید ۸ وزیر را در یک صفحهً معمولی (۸×۸) شطرنج قرار داد. این مسئله ۹۲ جواب دارد که ۱۲ جواب آن منحصر به‌فرد است یعنی بقیه جواب‌ها از تقارن جواب‌های اصلی به‌دست می‌آید. برای مطالعه ی بیشتر کلیک کنید.

در این پژوه به کمک روش تکاملی ژنتیک، مسئله ی هشت وزیر در محیط متلب (Matlab) پیاده سازی شده است.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در C پلاس پلاس

پیاده سازی الگوریتم ژنتیک در ++C:

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از ++C، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم هارمونی در دلفی (Delphi)

پیاده سازی الگوریتم هارمونی در دلفی (Delphi):

در این پروژه، با استفاده از دلفی (Delphi)، پیاده سازی الگوریتم هارمونی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم تکامل تفاضلی در زبان R

پیاده سازی الگوریتم تکامل تفاضلی در زبان R:

در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم تکامل تفاضلی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم هارمونی در زبان R

پیاده سازی الگوریتم هارمونی در زبان R:

در این پروژه، با استفاده از زبان R، پیاده سازی الگوریتم هارمونی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم ژنتیک در C شارپ

پیاده سازی الگوریتم ژنتیک در #C:

الگوریتم‌های ژنتیک (به انگلیسی: Genetic algorithm) تکنیک جستجو در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی مدل، ریاضی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکاملی است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت، جهش زیست‌شناسی و اصول انتخابی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگواستفاده می‌شود. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در مدل‌سازی الگوریتم ژنتیک یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها به عنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند که این الگوریتم‌ها از بخش‌های تابع برازش، نمایش، انتخاب وتغییر تشکیل می‌شوند.. برای مطالعه جزییات بیشتر در مورد الگوریتم ژنتیک کلیک کنید.

در این پروژه، با استفاده از #C، پیاده سازی الگوریتم ژنتیک به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در C شارپ

پیاده سازی الگوریتم بهینه سازی ازدحام در #C:

الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده‌است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز هم‌زمان پرندگان و تغییر ناگهانی مسیر آن‌ها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری می‌شوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد. نتیجهٔ مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند. ذرات از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته‌است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.

در این پروژه، با استفاده از #C، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در C پلاس پلاس

پیاده سازی الگوریتم بهینه سازی ازدحام در C پلاس پلاس:

الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده‌است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز هم‌زمان پرندگان و تغییر ناگهانی مسیر آن‌ها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری می‌شوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد. نتیجهٔ مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند. ذرات از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته‌است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.

در این پروژه، با استفاده از C پلاس پلاس، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، آماده ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم هارمونی در C پلاس پلاس

پیاده سازی الگوریتم هارمونی در دلفی ++C:

در این پروژه، با استفاده از ++C، پیاده سازی الگوریتم هارمونی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم هارمونی در جاوا (JAVA)

پیاده سازی الگوریتم هارمونی در جاوا (JAVA):

در این پروژه، با استفاده از جاوا (JAVA)، پیاده سازی الگوریتم هارمونی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم هارمونی در C شارپ

پیاده سازی الگوریتم هارمونی در #C:

در این پروژه، با استفاده از #C، پیاده سازی الگوریتم هارمونی به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه

پیاده سازی الگوریتم بهینه سازی ازدحام ذرات در جاوا (JAVA)

پیاده سازی الگوریتم بهینه سازی ازدحام در جاوا (JAVA):

الگوریتم PSO یک الگوریتم جستجوی جمعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده‌است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز هم‌زمان پرندگان و تغییر ناگهانی مسیر آن‌ها و تغییر شکل بهینهٔ دسته به کار گرفته شد. در PSO، ذرات در فضای جستجو جاری می‌شوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است؛ بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد. نتیجهٔ مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند. ذرات از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته‌است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند. برای مطالعه جزییات بیشتر در مورد الگوریتم بهینه سازی ازدحام ذرات کلیک کنید.

در این پروژه، با استفاده از جاوا (JAVA)، پیاده سازی الگوریتم بهینه سازی ازدحام به همراه توضیحات مربوطه، ارائه می گردد.

  • شریف پژوه
موضوعات
Archive