۲۷۸ مطلب با کلمه‌ی کلیدی «سفارش انجام پایان نامه» ثبت شده است

عقیده کاوی نظرات کاربران دیجی کالا با نرم افزار نایم (Knime)

سفارش انجام پروژه عقیده کاوی نظرات کاربران دیجی کالا:

رشد استفاده از اینترنت و شبکه‌های اجتماعی، باعث ایجاد متون انبوهی حاوی عقاید افراد شده‌است که در گذشته قابل ثبت نبوده‌اند. آگاهی از عقاید افراد برای بسیاری از امور مرتبط با تصمیم‌گیری اهمیّت فراوانی دارد. متن‌کاوی که شاخه‌ای از داده‌کاوی است، اطلاعات مفیدی را از متن استخراج می‌کند، ولی برای استخراج عقاید باید سراغ روش‌های پیشرفته‌تری رفت. عقیده‌کاوی به عنوان شاخه‌ای از متن‌کاوی با تمرکز بر روی استخراج عقاید شناخته می‌شود.

عقیده‌کاوی کاربردهای فراوانی دارد. از مهم‌ترین کاربردهای آن می‌توان به دنبال‌کردن عقاید مردم توسط سیاستمداران، آگاهی تولیدکنندگان از سطح رضایت مشتریان و پیش‌بینی تغییرات بازار با توجه به نظرات افراد اشاره کرد. سرعت زیاد و هزینهٔ کم مهم‌ترین عوامل جایگزین‌کردن عقیده‌کاوی با روش‌های سنتّی (به کمک نیروی انسانی) هستند. برای مطالعه جزییات بیشتر در مورد عقیده کاوی کلیک کنید.

در این پروژه، با استفاده از نرم افزار نایم (Knime)، مجموعه داده های مربوط به نظرات کاربران دیجی کالا مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم ممتیک

سفارش انجام پروژه تشخیص نفوذ در شبکه های کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم ممتیک:


سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم ممتیک (Memetic algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

عقیده کاوی نظرات کاربران دیجی کالا با نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler)

سفارش انجام پروژه عقیده کاوی نظرات کاربران دیجی کالا:

رشد استفاده از اینترنت و شبکه‌های اجتماعی، باعث ایجاد متون انبوهی حاوی عقاید افراد شده‌است که در گذشته قابل ثبت نبوده‌اند. آگاهی از عقاید افراد برای بسیاری از امور مرتبط با تصمیم‌گیری اهمیّت فراوانی دارد. متن‌کاوی که شاخه‌ای از داده‌کاوی است، اطلاعات مفیدی را از متن استخراج می‌کند، ولی برای استخراج عقاید باید سراغ روش‌های پیشرفته‌تری رفت. عقیده‌کاوی به عنوان شاخه‌ای از متن‌کاوی با تمرکز بر روی استخراج عقاید شناخته می‌شود.

عقیده‌کاوی کاربردهای فراوانی دارد. از مهم‌ترین کاربردهای آن می‌توان به دنبال‌کردن عقاید مردم توسط سیاستمداران، آگاهی تولیدکنندگان از سطح رضایت مشتریان و پیش‌بینی تغییرات بازار با توجه به نظرات افراد اشاره کرد. سرعت زیاد و هزینهٔ کم مهم‌ترین عوامل جایگزین‌کردن عقیده‌کاوی با روش‌های سنتّی (به کمک نیروی انسانی) هستند. برای مطالعه جزییات بیشتر در مورد عقیده کاوی کلیک کنید.

در این پروژه، با استفاده از نرم افزار کلمنتاین یا مدلر(IBM Spss Modeler) مجموعه داده های مربوط به نظرات کاربران دیجی کالا مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

عقیده کاوی نظرات کاربران دیجی کالا با نرم افزار وکا (Weka)

سفارش انجام پروژه عقیده کاوی نظرات کاربران دیجی کالا:

رشد استفاده از اینترنت و شبکه‌های اجتماعی، باعث ایجاد متون انبوهی حاوی عقاید افراد شده‌است که در گذشته قابل ثبت نبوده‌اند. آگاهی از عقاید افراد برای بسیاری از امور مرتبط با تصمیم‌گیری اهمیّت فراوانی دارد. متن‌کاوی که شاخه‌ای از داده‌کاوی است، اطلاعات مفیدی را از متن استخراج می‌کند، ولی برای استخراج عقاید باید سراغ روش‌های پیشرفته‌تری رفت. عقیده‌کاوی به عنوان شاخه‌ای از متن‌کاوی با تمرکز بر روی استخراج عقاید شناخته می‌شود.

عقیده‌کاوی کاربردهای فراوانی دارد. از مهم‌ترین کاربردهای آن می‌توان به دنبال‌کردن عقاید مردم توسط سیاستمداران، آگاهی تولیدکنندگان از سطح رضایت مشتریان و پیش‌بینی تغییرات بازار با توجه به نظرات افراد اشاره کرد. سرعت زیاد و هزینهٔ کم مهم‌ترین عوامل جایگزین‌کردن عقیده‌کاوی با روش‌های سنتّی (به کمک نیروی انسانی) هستند. برای مطالعه جزییات بیشتر در مورد عقیده کاوی کلیک کنید.

در این پروژه، با استفاده از نرم افزار وکا (Weka)، مجموعه داده های مربوط به نظرات کاربران دیجی کالا مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

عقیده کاوی نظرات کاربران دیجی کالا با نرم افزار رپیدماینر (RapidMiner)

سفارش انجام پروژه عقیده کاوی نظرات کاربران دیجی کالا:

رشد استفاده از اینترنت و شبکه‌های اجتماعی، باعث ایجاد متون انبوهی حاوی عقاید افراد شده‌است که در گذشته قابل ثبت نبوده‌اند. آگاهی از عقاید افراد برای بسیاری از امور مرتبط با تصمیم‌گیری اهمیّت فراوانی دارد. متن‌کاوی که شاخه‌ای از داده‌کاوی است، اطلاعات مفیدی را از متن استخراج می‌کند، ولی برای استخراج عقاید باید سراغ روش‌های پیشرفته‌تری رفت. عقیده‌کاوی به عنوان شاخه‌ای از متن‌کاوی با تمرکز بر روی استخراج عقاید شناخته می‌شود.

عقیده‌کاوی کاربردهای فراوانی دارد. از مهم‌ترین کاربردهای آن می‌توان به دنبال‌کردن عقاید مردم توسط سیاستمداران، آگاهی تولیدکنندگان از سطح رضایت مشتریان و پیش‌بینی تغییرات بازار با توجه به نظرات افراد اشاره کرد. سرعت زیاد و هزینهٔ کم مهم‌ترین عوامل جایگزین‌کردن عقیده‌کاوی با روش‌های سنتّی (به کمک نیروی انسانی) هستند. برای مطالعه جزییات بیشتر در مورد عقیده کاوی کلیک کنید.

در این پروژه، با استفاده از نرم افزار رپیدماینر (RapidMiner)، مجموعه داده های مربوط به نظرات کاربران دیجی کالا مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه داده کاوی تشخیص مشکلات ارتوپدی با نرم افزار وکا(Weka)

سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی:

جراحی ارتوپدی (Orthopedic surgery) یا استخوان‌پزشکی به شاخه‌ای از علم پزشکی گفته می‌شود که شامل درمان بیماری‌ها و اصلاح ناهنجاری‌های مربوط به استخوان‌ها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.

در این پروژه، با استفاده از نرم افزار وکا(Weka)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری

سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

با توجه به اهمیت نقش نرم‌افزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرم‌افزار در سال‌های اخیر، گسترش زیادی داشته است. خطاهای پیش‌بینی نشده ی نرم‌افزاری هزینه‌های زیادی را مصرف کننده ها، تحمیل می‌کند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستم‌های با کیفیت بالا متمرکز شده‌اند. مهم ترین مولفه در سیستم نرم‌افزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرم‌افزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم کلونی زنبور عسل برای داده کاوی بیماری دیابت

سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم کلونی زنبور عسل:

دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین می‌رود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمی‌تواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلول‌های بتا در پانکراس منجر به نقص تولید انسولین می‌شود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلول‌های بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم بهینه سازی ازدحام ذرات

سفارش انجام پروژه پیش بینی قیمت سهام با تلفیق روش های درخت تصمیم و الگوریتم بهینه سازی ازدحام ذرات:


در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم بهینه سازی ازدحام ذرات (Particle swarm optimization algorithm)، مجموعه داده های مربوط به پیش بینی قیمت سهام مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی شبکه عصبی با روش بهینه سازی ازدحام ذرات برای داده کاوی تشخیص تقلب در کارت های اعتباری

سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با روش ازدحام ذرات برای داده کاوی پیش بینی نقص در ماژول های نرم افزاری

سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات:

با توجه به اهمیت نقش نرم‌افزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرم‌افزار در سال‌های اخیر، گسترش زیادی داشته است. خطاهای پیش‌بینی نشده ی نرم‌افزاری هزینه‌های زیادی را مصرف کننده ها، تحمیل می‌کند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستم‌های با کیفیت بالا متمرکز شده‌اند. مهم ترین مولفه در سیستم نرم‌افزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرم‌افزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم بهینه سازی ازدحام ذرات برای داده کاوی بیماری قلبی

سفارش انجام پروژه داده کاوی تشخیص بیماری قلبی به کمک روش های شبکه ی عصبی و الگوریتم بهینه سازی ازدحام ذرات: 

بیماری قلبی-عروقی: یا بیماری قلبی  دسته‌ای از بیماری‌ها است که در قلب یا رگ‌ها (سرخرگ‌ها، مویرگ‌ها و سیاهرگ‌ها) رخ می‌دهد. بیماری قلبی-عروقی به هر گونه بیماری که دستگاه گردش خون را تحت تاثیر قرار دهد اشاره دارد که شامل بیماری‌های قلبی، بیماری‌های عروقی مغز و کلیه و بیماری‌های شریانی می‌شود. برای مطالعه جزییات بیشتر در مورد بیمارهای قلبی و انواع آن کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم بهینه سازی ازدحام ذرات (particle swarm optimization algorithm)، مجموعه داده های مربوط به بیماری قلبی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی بازاریابی مستقیم

سفارش انجام پروژه داده کاوی بازاریابی مستقیم به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

بازاریابی مستقیم (Direct Marketing) یعنی استفاده از کانال های مستقیم مصرف کننده، برای رساندن و تحویل کالاها و خدمات به مشتریان بدون استفاده از واسطه های بازاریابی. این کانال ها شامل پست مستقیم، کاتالوگ ها، بازاریابی تلفنی، تلویزیون تعاملی، دکه ها، وب سایت ها، و تجهیزات همراه می شوند. بازاریاب های مستقیم به دنبال یک پاسخ قابل اندازه گیری، مثل سفارش مشتری هستند. برای مطالعه جزییات بیشتر در مورد بازاریابی مستقیم کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به بازاریابی مستقیم مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی امتیاز اعتباری

سفارش انجام پروژه داده کاوی امتیاز اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

امتیاز اعتباری یک عبارت عددی است که با تکنیک‌های آماری و بر اساس اطلاعات واقعی که بیانگر وضعیت جاری و سابقه‌ای فرد یا شرکت هستند محاسبه می‌شود. امتیاز اعتباری یک نمره قابل مقایسه است؛ لذا تصمیم‌گیری بر این مبنا، در مقایسه با روش‌های سلیقه‌ای و گزارش‌های متنی، به مراتب قابل اطمینان‌تر و منصفانه‌تر خواهد بود. برای مطالعه جزییات بیشتر در مورد امتیازاعتباری کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به امتیاز اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ساختار شبکه عصبی با الگوریتم تکامل تفاضلی برای داده کاوی تشخیص تقلب

سفارش انجام پروژه داده کاوی تشخیص تقلب به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:

تقلب در مفهوم عام، عبارت است از تحریف حقایق مهم، توسط فردی که می داند ادعایش حقیقت ندارد و یا ارائه حقایق، بدون توجه نسبت به صحت آنها و به قصد فریب دیگران. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پروژه بهبود فرآیند تشخیص نفوذ با تلفیق روش های درخت تصمیم و الگوریتم هارمونی

سفارش انجام پروژه تشخیص نفوذ در شبکه های کامپیوتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:


سامانه‌های تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیب‌رسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزم‌های اصلی در برآوردن امنیت شبکه‌ها و سیستم‌های رایانه‌ای مطرح است و عمومأ در کنار دیواره‌های آتش و به صورت مکمل امنیتی برای آن‌ها مورد استفاده قرار می‌گیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه
موضوعات
Archive