۲۷۸ مطلب با کلمه‌ی کلیدی «سفارش انجام پایان نامه» ثبت شده است

بهینه سازی شبکه عصبی با الگوریتم ژنتیک برای پیش بینی ورشکستگی

سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم ژنتیک:

پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم ژنتیک (Genetic algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی مقاله: روش جدید تشخیص فیشینگ مبتنی بر ترکیب الگوریتم پنگوئن و داده کاوی

پیاده سازی مقاله: روش جدید تشخیص فیشینگ مبتنی بر ترکیب الگوریتم پنگوئن و داده کاوی

چکیده:

با دسترسی آسان به اینترنت، بسیاری از کسب و کارها فعالیت های خود را در شبکه های وابسته به اینترنت انجام می دهند. اما هموره مخاطرات امنیتی از جمله حملات فیشینگ این کسب و کارها را تهدید می کنند. تعدد ویژگی های صفحات وب، منجر به استفاده از روش های انتخاب ویژگی و ترکیب آنها با روش های یادیگیر به منظور تشخیص فیشینگ شده است. عملکرد مناسب الگوریتم فرا ابتکاری پنگوئن در یافتن پاسخ بهینه، ایده اصلی این مقاله جهت بررسی نحوه عملکرد این الگوریتم در مسئله تشخیص فیشینگ بوده است. بنابراین از تریکب الگوریتم پنگوئن در فاز انتخاب ویژگی با شبکه عصبی مصنوعی در فاز تشخیص فیشینگ استفاده شده است. برای آموزش و ارزیایی روش پینشهادی از یک مجموعه داده با 11055 نمونه وبسایت های فیشینگ و عادی استفاده شده است. نتایج پیاده سازی در محیط متلب نشان می دهد با افزایش اندازه جمعیت و تعداد تکرار در الگوریتم بهینه سازی پنگوئن، مقدار متوسط تابع انتخاب ویژگی 69.57%، و شاخص RMSE حدود 24.56% کاهش یافته است. همچنین روش پیشنهادی در مقایسه با شبکه عصبی مصنوعی چند لایه حدود 29.16% خطای کمتر در تشخیص فیشینگ را نشان می دهد.

  • شریف پژوه

بهینه سازی ماشین بردار پشتیبان با الگوریتم کلونی زنبور عسل برای داده کاوی سرطان

سفارش انجام پروژه داده کاوی تشخیص سرطان به کمک روش های ماشین بردار پشتیبان و الگوریتم کلونی زنبور عسل:

سرطان نامی است که به مجموعهٔ بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سلول‌های سرطانی از سازوکارهای عادی تقسیم و رشد سلول‌ها جدا می‌افتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلول‌ها می‌شوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد می‌توان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعه‌هایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.

در این پروژه، با استفاده از تلفیق روش های ماشین بردار پشتیبان (support vector machine) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به سرطان مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

بهینه سازی ماشین بردار پشتیبان با روش کلونی زنبور عسل برای پیش بینی نقص در ماژول های نرم افزاری

سفارش انجام پروژه داده کاوی پیش بینی نقص در ماژول های نرم افزاری به کمک روش های ماشین بردار پشتیبان و الگوریتم کلونی زنبور عسل:

با توجه به اهمیت نقش نرم‌افزارها در زندگی جوامع امروزی، تحقیقات پیرامون کیفیت نرم‌افزار در سال‌های اخیر، گسترش زیادی داشته است. خطاهای پیش‌بینی نشده ی نرم‌افزاری هزینه‌های زیادی را مصرف کننده ها، تحمیل می‌کند. بنابراین، تحقیقات حوزه ی نرم افزار، بر روی تولید سیستم‌های با کیفیت بالا متمرکز شده‌اند. مهم ترین مولفه در سیستم نرم‌افزاری، قابلیت اطمینان است. تعداد خرابی در زمان اجرای نرم‌افزار باید حداقل شود تا بتوان به قابلیت اطمینان مناسبی حاصل شود.

در این پروژه، با استفاده از تلفیق روش های ماشین بردار پشتیبان (support vector machine) و الگوریتم کلونی زنبور عسل (Artificial bee colony algorithm)، مجموعه داده های مربوط به پیش بینی نقص در ماژول های نرم افزاری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی لغو هتل ها با استفاده از یادگیری ماشینی

پیاده سازی پایان نامه: پیش بینی لغو هتل ها با استفاده از یادگیری ماشینی

لغو اتاق یک چالش بزرگ برای صنعت هتلداری است زیرا تعداد مهمانان بر کل تنظیمات عملیاتی تأثیر می گذارد. هدف از این تحقیق پیش بینی لغو هتل ها با استفاده از یادگیری ماشین و تجزیه و تحلیل عواملی است که بیشترین تأثیر را دارند. در این تحقیق راهکاری مبتنی بر تکنیک های داده کاوی و یادگیری ماشین برای حل این مسئله ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص تقلب صورت های مالی با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: تشخیص تقلب صورت های مالی با استفاده از تکنیک های داده کاوی

بررسی تقلب مالی در واقع یکی از موضوعات چالش برانگیز است با توجه به این که پیامدهای اقتصادی و اجتماعی ناشی از تقلب می تواند گسترده باشد. به این ترتیب تقلب مالی در حال تبدیل شدن به یک مشکل جدی است و در نتیجه، شناسایی موثر تقلب حسابداری همیشه یک کار مهم اما نسبتاً پیچیده برای متخصصان حسابداری بوده است. در این تحقیق راهکاری مبتنی بر تکنیک های داده کاوی برای حل این مسئله ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی

تخمین زده می شود که تقریباً 10 درصد از نوزادان در هنگام تولد به نوعی کمک برای تنفس نیاز دارند. با هدف پیشگیری از مرگ و میر نوزادان، در این تحقیق پیش بینی نیاز به احیای نوزاد با توجه به برخی شرایط سلامت نوزاد و مادر و همچنین ویژگی های بارداری و زایمان با استفاده از مدل های داده کاوی انجام می شود.

  • شریف پژوه

یاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی

بهداشت و درمان به یکی از بزرگترین صنایع در سطح جهان تبدیل شده است و به همین دلیل منابع زیادی را مصرف می کند. در سال‌های اخیر بستری مجدد در بیمارستان به دلیل هزینه‌های غیرضروری در سیستم مراقبت‌های بهداشتی به موضوعی قابل توجه تبدیل شده است. بسیاری از بستری‌های مجدد قابل پیشگیری به کیفیت پایین مراقبت در طول اقامت بیمار در بیمارستان و همچنین به ضعیف فرآیند ترخیص مربوط می‌شود. در سال های اخیر به کارگیری تکنیک های داده کاوی توانسته مداخلات موثر و پیشگیرانه را برای آن اجرا کند.

  • شریف پژوه

پیاده سازی پایان نامه: داده کاوی برای انتخاب ویژگی در داده های بیان ژن

پیاده سازی پایان نامه: داده کاوی برای انتخاب ویژگی در داده های بیان ژن

شناسایی مهم‌ترین ژن‌ها و توالی‌های ژنی (عنوان ویژگی‌ها) ذخیره‌شده در مجموعه داده‌ای از ریزآرایه‌های بیان ژن یکی از مسائل مهم در حوزه ی پزشکی است. انتخاب مهم‌ترین ژن‌ها و طبقه‌بندی موارد بر اساس ژن‌های انتخابی با استفاده از تکنیک های داده کاوی یکی از راهکار های موجود در این زمینه است.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی

پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی

با رشد سریع اینترنت، حملات سایبری به شبکه ها و سیستم های رایانه ای نیز به سرعت افزایش یافته است. به عنوان یک اقدام احتیاطی در برابر این حملات، سیستم‌های تشخیص نفوذ (IDS) در سیستم‌های شبکه مستقر شده‌اند. سیستم‌های تشخیص نفوذ بخشی از دومین خط دفاعی یک سیستم هستند.. آن ها را می توان همراه با سایر اقدامات امنیتی مانند کنترل دسترسی، مکانیسم های احراز هویت و تکنیک های رمزگذاری به منظور ایمن سازی بهتر سیستم ها در برابر حملات سایبری مستقر کرد. استفاده از ترکیب تکنیک های داده کاوی راهکاری برای ارائه ی یک سیستم تشخیص نفوذ موثر می باشد.

  • شریف پژوه

پیاده سازی پایان نامه: شناسایی موارد پرت در قیمت گذاری مسکن با تکنیک های داده کاوی

پیاده سازی پایان نامه: شناسایی موارد پرت در قیمت گذاری مسکن با تکنیک های داده کاوی

با توجه به اینکه برای افراد شناخت تغییر و تحول هایی که در آینده رخ می دهد اهمیت فراوانی دارد موضوعاتی که پیرامون پیش بینی می باشد برای افراد مورد توجه است. از جمله مواردی که در این بین اهمیت فراوانی دارد موضوعات پیرامون مسائل مالی از جمله پیش بینی قیمت مسکن می باشد. هدف از این تحقیق ارائه ی مدلی برای پیش بینی قیمت مسکن و پس از آن شناسایی موارد پرت در قیمت گذاری های انجام شده در این حوزه است.

  • شریف پژوه

پیاده سازی پایان نامه: تشخیص احتمالات مشکوک به پولشویی با استفاده از تکنیک های داده‌کاوی

پیاده سازی پایان نامه: تشخیص احتمالات مشکوک به پولشویی با استفاده از تکنیک های داده‌کاوی

در سال های اخیر موضوع پولشویی یکی از مباحث مهم اقتصادی می باشد که معضلات فراوانی را برای شرکت های کوچک و بزرگ ایجاد کرده است. از این رو راهکار های متعددی برای حل این مشکل در سراسر جهان پیشنهاد شده است. با توجه به گستردگی داده های موجود در این زمینه یکی از راهکار های حل این مسئله استفاده از تکنیک های داده کاوی می باشد.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی میزان بارش فصلی و ماهیانه براساس داده کاوی

پیاده سازی پایان نامه: پیش بینی میزان بارش فصلی و ماهیانه براساس داده کاوی

داده‌کاوی هواشناسی شکلی از داده‌کاوی است که به یافتن الگوهای پنهان در داده‌های هواشناسی که تا حد زیادی در دسترس است می‌پردازد، به طوری که اطلاعات بازیابی شده می‌تواند به دانش قابل استفاده تبدیل شود. آب و هوا یکی از داده های هواشناسی است که سرشار از دانش مهم است. مهمترین عنصر اقلیمی که بر بخش های مختلف مانند کشاورزی تأثیر می گذارد، بارندگی است. بنابراین پیش‌بینی بارندگی در کشورهای مختلف به یک موضوع مهم تبدیل شده است. در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای پیش بینی بارندگی ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی زمان بندی کار ها

پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی زمان بندی کار ها 

مسئله ی زمان‌بندی کارها (Job shop scheduling) یک مسئلهی بهینه‌سازی علوم رایانه و تحقیق در عملیات است که در آن کار های ایده‌آل به منابع در زمان‌های خاصی نسبت داده می‌شوند. در این مسئله n کار j1, j2, …, jn با اندازه‌های متفاوت که باید روی m ماشین یکسان زمان‌بندی شوند در تلاشند تا زمان کل(makespan)  را به حداقل برسانند. زمان کل مجموع زمان لازم برای انجام همه ی کار است. امروزه، این مسئله به عنوان یک مسئله ی پویا مطرح می‌شود، که با ارائه شدن هر کار، الگوریتم پویا باید با اطلاعات موجود تصمیم‌گیری کند قبل از اینکه کار بعدی مطرح شود.

در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای حل مسئله ی زمان بندی کار ها ارائه می شود.

  • شریف پژوه

پیاده سازی پایان نامه: پیش بینی مصرف انرژی ساختمان با استفاده از تکنیک های داده کاوی

پیاده سازی پایان نامه: پیش بینی مصرف انرژی ساختمان با استفاده از تکنیک های داده کاوی

پیش‌بینی هوشمند مصرف انرژی به‌ویژه برای ساختمان‌ها مسئله ی مهمی است، زیرا مصرف انرژی ساختمان‌ها روز به روز در حال افزایش است و تقریباً به 40 درصد مصرف انرژی اولیه در کشورهای توسعه‌یافته می‌رسد. در سال های اخیر مصرف انرژی به دلیل رشد جمعیت به تدریج افزایش یافته است. افزایش مصرف انرژی ساختمان ها، اجباری را در کشورهای مختلف برای مدیریت و کاهش هر چه بیشتر مصرف انرژی به منظور ارتقای بهره وری انرژی ایجاد می کند.

در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای پیش بینی مصرف انرژی ساختمان ارائه می شود.

  • شریف پژوه

پیاده سازی مقاله: تحلیل روش های داده کاوی در پیش بینی ریزش مشتریان مخابرات

پیاده سازی مقاله: تحلیل روش های داده کاوی در پیش بینی ریزش مشتریان مخابرات

چکیده:

امروزه عملیات داده کاوی به صورت گسترده توسط تمامی شرکت ھای مشتری محور، از جمله مخابرات استفاده می شود. مھم ترین چالش و مسیله ای که صنعت مخابرات با آن روبه رو است، ریزش مشتری است. در این مقاله به بررسی تکنیک ھای پیش بینی ریزش مشتریان در مخابرات پرداخته ایم. به این نتیجه رسیدیم که تکنیک ھای مبتنی بر درخت تصمیم گیری دقیق تر از تکنیک ھای مبتنی بر رگرسیون است. روش ھای داده کاوی مبتنی بر شبکه ھای عصبی در مقایسه با تکنیک ھای درخت تصمیم گیری، نتایج بھتری ارایه می دھند. روش ھای مبتنی بر درخت تصمیم به ویژه 0/5C و CART از نظر دقت عملکرد نتایج بھتری نسبت به برخی از تکنیک ھای داده کاوی موجود مانند رگرسیون، دارند.
  • شریف پژوه

پیاده سازی مقاله: تجزیه و تحلیل داده های بزرگ تجاری در رایانش ابری مبتنی بر آپاچی اسپارک

پیاده سازی مقاله: تجزیه و تحلیل داده های بزرگ تجاری در رایانش ابری مبتنی بر آپاچی اسپارک

چکیده:

حجم بالایی از داده های تجاری توسط برنامه های کاربردی یا در محیط وب مرتبا ایجاد می شود و نیاز است که این داده ها مورد تجزیه و تحلیل قرار گرفته تا دانش نهفته درون آنها آشکار شود. روش های یادگیری ماشین و داده کاوی از جمله تکنیک های مهم در تحلیل داده های تجاری است اما چالش آنها در این است که توانایی آنها برای پردازش داده های بزرگ اندک است و نیاز است از روش های توزیع شده آنها استفاده شود. در این پژوهش یک روش مبتنی بر پردازش توزیع شده توسط فناوری آپاچی اسپارک ارائه شده تا روش های داده کاوی و یادگیری ماشین مانند تکنیک های درخت تصمیم گیری، جنگل تصادفی و رگرسیون در این بستر اجرایی شده و تحلیل داده های تجاری در زمان واقعی انجام شود. برای پیاده سازی روش پیشنهادی از داده های مرتبط با مشتریان در کاربردهای تجاری و محیط پردازش ابری آپاچی اسپارک استفاده شده است. نتایج نشان می دهد از بین تکنیک های درخت تصمیم گیری، جنگل تصادفی و رگرسیون در آپاچی اسپارک و حالت غیرتوزیع شده تکنیک رگرسیون دارای حداقل خطای ممکن برای تحلیل داده های تجاری است و از طرفی جنگل تصادفی در بین تکنکی های درخت تصمیم گیری، جنگل تصادفی و رگرسیون چه در حالت توزیع شده و چه در حالت غیرتوزیع شده دارای حداقل زمان اجراء برای تحلیل داده ها است.
  • شریف پژوه

پیاده سازی مقاله: پردازش موازی در داده کاوی

پیاده سازی مقاله: پردازش موازی در داده کاوی

چکیده:

با افزایش انفجار گونه داده های بزرگ در زمینه های صنعتی و علمی، برای کار بر روی این داده ها و تجزیه و تحلیل آنها، سیستم های پردازش داده های بزرگ بسیار ضروری به نظر می رسد. مپ ریدوس و اسپارک دو محدوده محاسبات خوشه ای بسیار محبوب برای تجزیه و تحلیل داده ها در مقیاس بزرگ هستند، در حال حاضر مسلما اسپارک از لحاظ ویژگی هایی مانند تحمل خطا، عملکرد بالای پردازش داده ها در حافظه و مقیاس پذیری، جزء پیشرفته ترین سیستم های محاسباتی داده های بزرگ می باشد. اسپارک یه مدل برنامه ریزی آردیدی (مجموعه داده های توزیع شده) را در اختیار شما قرار می دهد، مدل برنامه نویسی با مجموعه ای از تحول ارائه شده و اپراتورهایی که عملکرد عملیات را می توان توسط کاربران با توجه به برنامه های خود را سفارشی کنند. اسپارک در اصل به عنوان یک سیستم پردازش سریع و کلی ارائه شده است که با توجه به شرایط مختلف از زمان معرفی آن، تلاش زیادی برای انجام کارهای تحقیقاتی روی آن انجام شده است. در این مقاله ما دلایل اهمیت داده پردازی موزای را بررسی نمودیم و در نهایت دو مدل محاسباتی مپ ریدوس و اسپارک را بعنوان ابزارهای رایج و مهم دادهپردازی موازی، بررسی و در مواردی با هم مقایسه نمودیم. در این بررسی نهایتا مشخص شد، بجز عملیات مرتب سازی، اسپارک گزینه بهتری برای داده کاوی موازی است.

  • شریف پژوه

پیاده سازی مقاله: تحلیل سبد خرید مشتریان در خرید اینترنتی با استفاده از تکنیک های داده کاوی

پیاده سازی مقاله: تحلیل سبد خرید مشتریان در خرید اینترنتی با استفاده از تکنیک های داده کاوی

چکیده:

در این مقاله عملیات برخی خریدها با انتخاب تصادفی در یک سایت بازاریابی مورد بررسی قرار می گیرد.این خریدها در فضای بیکران اینترنت که مجموعه ای بسیار بزرگ از شبکه های بزرگ و کوچک به هم پیوستهاست ، انجام می گیرد . اگر به جای رفتن به محیط بیرون از خانه و خرید از فروشگاههای سنتی و مدرن ، با استفاده از اینترنت خرید خود را انجام دهید خرید اینترنتی صورت گرفته است که هزینه آن به صورت آنلاین پرداخت می شود و یا مامور پست کالا را جلوی منزل به مشتری تحویل می دهد و هزینه کالا را پس از تحویل از مشتری دریافت می کند .سبد خرید مشتری شامل کالاهایی است که مشتری از یک فروشگاه اینترنتی خریده است .یعنی ممکن است یکباره چندین کالا خریده باشد .داده کاوی مجموعه ای از روشها در فرآیند کسب دانش است که برای تشخیص الگوها و رابطه های نامعلوم در داده ها مورد استفاده قرار می گیرد . فروش بازاریاب سایت ایران سی نت به عنوان موردانجام شد .در این مقاله سعی weka مطالعه فرض شده است . فرآیند داده کاوی در این پژوهش با استفاده از نرم افزار شده تا رابطه بین خرید چند کالا بررسی شود و پیشنهاد دهیم که اگر یکی از آنها را مشتری خرید ، با استفاده از قوانین کشف شده چه کالاهای دیگری را می تواند انتخاب کند .

  • شریف پژوه

پیاده سازی مقاله: شناسایی کاربران اسپم در شبکه های اجتماعی با استفاده از الگوریتم KNN

پیاده سازی مقاله: شناسایی کاربران اسپم در شبکه های اجتماعی با استفاده از الگوریتم KNN

چکیده:

امروزه با فراگیر شدن اینترنت، استفاده از شبکه های اجتماعی نیز گسترش یافته است. هدف افراد از عضویت در اینگونه شبکه ها به اشتراک گذاشتن داده ها در زمینه های مختلف است. این شبکه ها به کاربران اجازه میدهند تا مطالب خود را در زمینه های گوناگون گسترش دهند. مشکل زمانی پیش می آید که کاربری بخواهد از این قابلیت سوءاستفاده کرده و مطالب اسپم ارسال نماید. ما در این مقاله شناسایی اینگونه کاربران را مد نظر قرار داده ایم. برای بررسی این موضوع از پایگاه داده یکی از این شبکه ها استفاده کردیم. در مرحله یادگیری، به کمک کاربران عضو، اسپمرها را شناسایی کرده و خصوصیاتی را که مرتبط با این گونه کاربران هستند، درنظر گرفته ایم. براین اساس، کاربران جدید با درنظر گرفتن خصوصیاتشان و الگوریتمknn در یکی از دسته های اسپمر یا غیراسپمر طبقه بندی می شوند. در این روش حدود 75 درصد از اسپمرها به درستی تشخیص داده شدهاند. در مرحله بعدی، دسته بندی بر اساس مطالب کاربران انجام می شود. با این روش دقت تشخیص اسپمرها افزایش یافته و به 84 درصد میرسد.

  • شریف پژوه
موضوعات
Latest Posts
Archive