پیاده سازی مقاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی
چکیده:
پیاده سازی مقاله: الگوریتم جستجوی گرانشی فازی، رهیافتی برای داده کاوی
چکیده:
پیاده سازی مقاله: ایجاد مدل برای تشخیص بیماری مزمن کلیه با استفاده از الگوریتم های ماشین بردار پشتیبان، جنگل و درخت تصمیم
چکیده:
امروزه بیماری مزمن کلیه یکی از مهمترین بیماریهای رایج بین افراد جامعه بخصوص بزرگسالان است. این بیماری در واقع نوعی مرگ خاموش محسوب میشود زیرا این بیماری از دسته بیماریهای مزمن است و یکباره فرد به این بیماری مبتلا نمی شود و ممکن است، سالهای سال مبتلا به این بیماری باشد بدون اینکه کوچکترین علائمی از خود نشان دهد و زمانی علائم خود را بروز دهد که به بدترین وضعیت بیماری برسد و منجر به خطر افتادن جان بیمار یا صرف هزینه های بسیاری برای دیالیز یا پیوند کلیه های بیمار شود. هدف این پژوهش ارائه مدل هوشمند برای کمک به شناسایی و تشخیص بیماری کلیه با استفاده از روشها و الگوریتم های یادگیری ماشین و داده کاوی برروی مجموعه داده کلیه دانشگاه کلیولند کالیفرنیا است. در این تحقیق برای ساخت مدل پیشبینی در ابتدا مجموعه داده اصلی را به دو مجموعه داده آموزش/ ارزیابی و مجموعه داده آزمایش تقسیم کردیم. به کمک مجموعه داده آموزش/ارزیابی با استفاده از روش اعتبار سنجی متقابل fold-10 و الگوریتم های درخت تصمیم، جنگل تصادفی و ماشین بردار پشتیبان مدل را ایجاد کرده و دقت نهایی مدل در این پژوهش را به کمک مجموعه داده آزمایش ارزیابی کرده ایم. در انتها نتایج بدست آمده با الگوریتم های جنگل تصادفی و ماشین بردار پشتیبان با دقت های 89,98 %بالاترین دقت را دراین پژوهش حاصل کرده است.
پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
چکیده:
استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.
پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی
چکیده:
بدافزار به هرگونه برنامه کامپیوتری اطلاق می شود که دارای اهداف مخرب باشد. این برنامه ها مهمترین تهدید برای سیستم هایکامپیوتری به حساب می آیند. تنوع این بدافزارها باعث محدود شدن راه کارهای مقابله با آنها شده است، به گونه ای که روزانه میلیون ها سیستمکامپیوتری بر اثر آسیب های ناشی از انواع ویروس ها، تروجان ها و کرم های اینترنتی و غیره آلوده می شوند. در سال های اخیر یکی از مهمترینچالش های امنیت اطلاعات و شبکه های ارتباطی، افزایش روز افزون انواع بدافزارها و به دنبال آن یافتن راه های مناسب جهت حفاظت سیستم ها درمقابل آنهاست که از مهمترین دغدغه های برنامه نویسان و متخصصین امنیت اطلاعات، شناخت به موقع و یافتن راه های مقابله با اثرات مخرباینگونه بدافزارها می باشد. در این راستا طی سالهای اخیر استفاده از الگوریتم های داده کاوی و هوش مصنوعی بعنوان یکی از روشهای نوظهور وامیدوار کننده توانسته است کاربرد بسیاری جهت شناسایی و تشخیص انواع بدافزارها داشته باشد. لذا در این تحقیق سعی کردیم با استفاده ازشبکه عصبی مصنوعی و الگوریتم ازدحام ذرات، فایل های آلوده به بدافزار را تشخیص دهیم. پیاده سازی روش پیشنهادی نشان میدهد که توانستهاست فایل های آلوده به بدافزار را با استفاده از مجموعه داده مربوط به فایل های سالم و آلوده به بدافزار با دقت 0.91 درصد تشخیص دهد که نشان ازعملکرد بالای آن دارد.
پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی
چکیده:
با گسترش روز افزون استفاده از سامانه های نوین بانکی و افزایش تعداد عملیات بانکی، سوء استفاده های مالی و تقلب در این عملیات بیشاز پیش گسترش پیدا کرده است. اینگونه سوء استفاده ها علاوه بر اتلاف منابع مالی، باعث کاهش اعتماد مشتریان به استفاده از سامانه های نوینبانکی و در نتیجه کاهش اثر بخشی این سامانه ها در مدیریت بهینه ی سرمایه و تراکنش های مالی می شود. در این پژوهش جهت کشف تقلببانکی بر روی مجموعه داده های بانکی ، از ترکیب الگوریتم های داده کاوی استفاده شده است. برای انجام کار در ابتدا، خوشه بندی رکوردهای دادهای موجود در مجموعه داده ها صورت گرفته است و به دنبال آن، تشخیص تراکنش های بانکی شبهه دار، در زمان انجام تراکنش تشخیص داده میشود. نتایج حاصل نشان می دهد که روش پیشنهادی دارای میزان دقت بالاتری نسبت به الگوریتم های داده کاوی دیگر همچون درخت تصمیم J48و جنگلهای تصادفی دارد.
پیاده سازی مقاله: تشخیص نفوذ در شبکه های کامپیوتری مبتنی بر سیستم های فازی و الگوریتم جستجوی ممنوعه
چکیده:
با توجه به گسترش و توسعه سریع شبکه های کامپیوتری، نفوذ و حملات به آن ها افزایش یافته و به طرق و شیوه های مختلف انجام می شود. هدف از تشخیص نفوذ برای شناسایی استفاده غیرمجاز، سوء استفاده، و آسیب پذیری های ایجاد شده توسط کاربران داخلی و مهاجمان خارجی است. در این مقاله قصد داریم که سیستم تشخیص نفوذ از نوع سوء استفاده مبتنی بر سیستم فازی و الگوریتم جستجوی ممنوعه را ارائه کنیم. در ابتدا دانش موردنیاز خود را از سیستم فازی که مجموعه ای از قوانین if-then است، را کسب کرده و سپس الگوریتم جستجوی ممنوعه برای بهینه کردن مجموعه قوانین به دست آمده را بر روی مجموعه داده NSL-KDD پیاده و اجرا نمودیم. نتایج به دست آمده در مقایسه با نتایج موجود حاکی از آن است که روش پیشنهادی از صحت و کارایی مناسبی برخوردار است.
پیاده سازی مقاله: ارایه یک روش انتخاب ویژگی جدید با بکارگیری الگوریتم رقابت استعماری در راهکار فیلتر
چکیده:
با پیشرفت تکنولوژی در زمینه داده کاوی، مجموعه های دادهای با ابعاد بالا در حال افزایش است که در آن بسیاری ازویژگیها بی ربط و زاید هستند و منجر به کاهش کارایی الگوریتم های دسته بندی میشود؛ بنابراین، کاهش ابعاد این مجموعه های دادهای تبدیل به یک تلاش ضروری شده است. انتخاب ویژگی یک تکنیک رایج برای غلبه بر این مشکل است که هدف آن، شناسایی زیرمجموعه ای از ویژگیهای مفید از بین مجموعه ویژگیهای اولیه برای بهبود عملکرد طبقه بندی است. در این مقاله، روش جدیدی برای انتخاب ویژگی مبتنی بر راهکار فیلتر به نامSimRelICA ارایه میشود. در روش پیشنهادی با بکارگیری الگوریتم رقابت استعماری چارچوبی ارایه شده که فرآیند انتخاب ویژگی را مستقل از هر طبقه بندی کننده، انجام میدهد. در ابتدا، هر کشور با استفاده از یک شکل جدید، بازنمایی میشود. سپس با توجه به این بازنمایی،روش جدیدی برای تولید جمعیت اولیه پیشنهاد شده است. در طی یک فرآیند تکرارشونده، روش پیشنهادی یک زیرمجموعه ویژگی مناسب را انتخاب میکند که در آن از تابع هزینه جدید برای محاسبه هزینه هر کشور استفاده شده است. این تابع هزینه به شکلی ارایه شده است که مناسب بودن هر ویژگی را ارزیابی میکند. عملکرد روش پیشنهادی با روشهای انتخاب ویژگی شناخته شده، با استفاده از طبقه بندی کنندههای مختلف مقایسه شده است. نتایج آزمایشها نشان از برتری روش پیشنهادیSimRelICA به لحاظ دقت طبقهبندی، بر روشهای انتخاب ویژگی موجود دارد. همچنین نتایج نشان میدهد که با توجه به مستقل بودن روش پیشنهادی از طبقه بندی کننده، عملکرد مناسبی بر روی طبقه بندی کننده های مختلف داشته است.
پیاده سازی مقاله: استفاده از تکنیک های متن کاوی در تجزیه و تحلیل احساسات کاربران ایرانی LinkedIn
چکیده:
امروزه با استفاده روزافزون از شبکه های اجتماعی شاهد حجم انبوهی ازنظرات کاربران درارتباط با موضوعات مختلف هستیمکه مطالعه و تحلیل نظرات در حجم انبوه با مشکلات زیادی روبرو بوده و کاربرد تکنیک های علمی نوین ضرورتی اجتناب ناپذیرمی باشد. در این پژوهش با کاربرد تکنیک متن کاوی و تحلیل محتوا پدیده های اقتصادی سال 1398 را در شبکه اجتماعی LinkedIn مورد مطالعه و بررسی قرار داده و تمام پست های انتشار یافته شامل؛ 2800 پست را در چهار گروه؛ تورم و افزایش هزینه های زندگی و افزایش قیمت کالا ها، افزایش دستمزد کارگران و کارمندان، افزایش نرخ بیکاری، تغییر نرخ ارز رده بندی و همبستگی بین رده ها را با ویژگی کاربران توصیف نموده است. پست های کاربران به کمک نرم افزار rapidmainer و الگوریتم های متن کاوی مورد تحلیل قرار گرفت و در پایان به این نتیجه رسیدیم که احساسات و فعالیت های کاربران در شبکه های اجتماعی ارتباط مستقیم با ویژگی های شخصی آنها دارد.
نوشتن پایان نامه یکی از مراحل مهم در فرآیند تحصیلات تکمیلی محسوب می شود. فرآیند انتخاب موضوع و نگارش پایان نامه در کارشناسی ارشد، به طور معمول در سال دوم تحصیلی صورت می پذیرد.
مهم ترین مسئله در پایان نامه، انتخاب موضوع می باشد. موضوع پایان نامه باید به نحوی انتخاب شود که حوزه مورد بررسی تا حدی مورد تحقیق توسط سایر محققان واقع شده باشد و هم اینکه امکان بهبود و نوآوری در این زمینه فراهم باشد. انتخاب اشتباه و نادرست موضوع پایان نامه می تواند برای یک سال تحصیلی و حتی بیشتر از آن، دانشجو را با زحمت و مشکلات عدیده ای رو به رو کند.
چکیده: به سبب رشد سریع شبکه ها و رسانه های اجتماعی، امکان دسترسی افراد به نظرهای دیگران افزایش یافته است. نظرها، حاوی اطلاعات ارزشمندی اند که با تحلیل آنها، می توان به گرایش ها و ترجیح افراد پی برد و نظرهای مثبت و منفی را نسبت به مسائل گوناگون، شناسایی کرد. نظرکاوی فرایندی است که به تحلیل عاطفه ها، احساس ها و نظرهای افراد می پردازد و از این طریق، اولویت افراد را شناسایی می کند. در این مقاله، روشی برای نظرکاوی در زبان فارسی ارائه شده است که از ترکیب لغت نامه و الگوریتم نظارتی ماشین بردار پشتیبان (SVM) استفاده می کند. برای ایجاد لغت نامه، از لغت نامه SentiWordNet بهره برده شده است. در واقع این لغت نامه، مجموعه ویژگی های الگوریتم SVM است. برای ارزیابی نتایج، از داده های دامنه هتل استفاده شد. چهار فرضیه برای دستیابی به بهترین نتیجه تعریف شد که از این بین، بیشترین درستی، به فرضیه حاصل ضرب قطبیت در تعداد تکرار کلمه ها اختصاص یافت.
سفارش انجام پروژه زمانبندی بهینه کارها با استفاده از الگوریتم ممتیک در محیط رایانش ابری (CloudSim):
در این پروژه، با استفاده از الگوریتم ممتیک (Memetic algorithm)، زمانبندی بهینه کارها در محیط رایانش ابری (Cloud Computing) مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ریزش مشتری با تلفیق روش های درخت تصمیم و الگوریتم هارمونی:
رویگردانی مشتریان یا ریزش مشتری، اصطلاحی تجاری اســت که برای از دست رفتن مشــتریان استفاده میشود. سازمانها و شرکتهایی مانند بانکها، شرکتهای مخابراتی، ارائهدهندگان خدمات اینترنتــی (ISP)، شرکتهای تلویزیون کابلی، شرکتهای بیمه و غیره اغلب از رویگردانی مشــتریان و نرخ از دست دادن مشــتریان بهعنوان یکی از معیارهای کلیدی سنجش در کسبوکار استفاده میکنند. دلیل این امر این است که هزینه نگهداری یک مشتری موجود بسیار کمتر از هزینه جذب یک مشتری تازه است. بنابراین این نوع بنگاههای اقتصادی، اغلب واحدها و بخشهایی به نام خدمات مشــتریان دارند که سعی میکنند مشــتریان رویگردان را دوباره بازگردانند زیرا مشــتریان قدیمی معمولاً ارزش بیشــتری از مشتریان جدید خلق میکنند. برای مطالعه ی بیشتر کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های درخت تصمیم (decision tree) و الگوریتم هارمونی (Harmony algorithm)، مجموعه داده های مربوط به پیش بینی ریزش مشتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه بهبود یادگیری عمیق با الگوریتم فاخته برای شناسایی اعداد دست نویس:
در این پروژه، با استفاده از تلفیق روش های یادگیری عمیق (Deep Learning) و الگوریتم فاخته (Cuckoo algorithm)، مجموعه داده های مربوط به اعداد دست نویس، مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص تقلب در کارت های اعتباری به کمک روش های شبکه ی عصبی و الگوریتم تکامل تفاضلی:
به دلیل ضعف های امنیتی سیستم پردازش کارت هـای بـانکی، تقلـب در آن هـا رونـد رو به گسترشی دارد و خسارت های زیادی وارد می کند. تقلب در کارت های بانکی به یکی از راه های کسب درآمد بـرای مجرمـان تبـدیل شـده اسـت. به همین دلیل مسئله ی تقلب برای بانـکهـا و مؤسسه ها اهمیت بالایی دارد. رویکردهای تشخیص تقلب به طور گسترده به دو دسته تقسیم می شوند. مورد اول، تشخیص سو استفاده است که تلاش می کند که موارد مشاهده شده قبلی را در قالب یک الگو یا امضا تشخیص دهد. مورد دوم، تشخیص ناهنجاری است که تلاش می کند تا یک مشخصه از تاریخچه عملکرد برای هر کاربر ایجاد کرده و سپس با هرگونه انحراف به قدر کافی بزرگ، پی به یک رفتار مشکوک می برد.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم تکامل تفاضلی (differential evolution algorithm)، مجموعه داده های مربوط به تشخیص تقلب در کارت های اعتباری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص سرطان:
سرطان نامی است که به مجموعهٔ بیماریهایی اطلاق میشود که از تکثیر مهارنشده سلولها پدید میآیند. سلولهای سرطانی از سازوکارهای عادی تقسیم و رشد سلولها جدا میافتند. علت دقیق این پدیده همچنان نامشخص است ولی احتمال دارد عوامل ژنتیکی یا مواردی که موجب اختلال در فعالیت سلولها میشوند در هسته سلول اشکال وارد کنند. از جملهٔ این موارد میتوان از مواد رادیو اکتیو، مواد شیمیایی و سمی یا تابش بیش از حد اشعههایی مانند نور آفتاب نام برد. در یک جاندار سالم، همیشه بین میزان تقسیم سلول، مرگ طبیعی سلولی و تمایز، تعادلی وجود دارد. برای مطالعه جزییات بیشتر در مورد بیماری سرطان کلیک کنید.
در این پروژه، با استفاده از زبان R، مجموعه داده های مربوط به سرطان (انواع سرطان) مورد بررسی قرار گرفته است. راهکارهای متعدد پاکسازی داده ها، دسته بندی، خوشه بندی بر روی داده ها اعمال شده است و نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص مشکلات ارتوپدی به کمک روش های شبکه ی عصبی و جستجوی فاخته:
جراحی ارتوپدی (Orthopedic surgery) یا استخوانپزشکی به شاخهای از علم پزشکی گفته میشود که شامل درمان بیماریها و اصلاح ناهنجاریهای مربوط به استخوانها و مفاصل است. برای مطالعه جزییات بیشتر در مورد جراحی ارتوپدی و انواع آن کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستجوی فاخته (Cuckoo search)، مجموعه داده های مربوط به مشکلات ارتوپدی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص نفوذ در شبکه های کامپیوتری به کمک روش های شبکه ی عصبی و الگوریتم فاخته:
سامانههای تشخیص نفوذ، وظیفهٔ شناسایی و تشخیص هر گونه استفادهٔ غیرمجاز به سیستم، سوء استفاده یا آسیبرسانی توسط هر دو دستهٔ کاربران داخلی و خارجی را بر عهده دارند. تشخیص و جلوگیری از نفوذ امروزه به عنوان یکی از مکانیزمهای اصلی در برآوردن امنیت شبکهها و سیستمهای رایانهای مطرح است و عمومأ در کنار دیوارههای آتش و به صورت مکمل امنیتی برای آنها مورد استفاده قرار میگیرند. برای مطالعه جزییات بیشتر در مورد تشخیص نفوذ کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم فاخته (Cuckoo search)، مجموعه داده های مربوط به تشخیص نفوذ در شبکه های کامپیوتری مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم سیستم ایمنی مصنوعی:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و سیستم ایمنی مصنوعی (Artificial immune system)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه پیش بینی ورشکستگی به کمک روش های شبکه ی عصبی و الگوریتم رقابت استعماری:
پیش بینی ورشکستگی یکی از مهم ترین عنوان های کاربرد داده کاوی در حوزه های مالی است. در این راستا، عوامل، شرایط و اقداماتی که نهایتا به مشکلات مالی منجر می شود، شناسایی خواهند شد. در طول سال های اخیر، تحقیقات مالی و حسابداری گسترده ای در این زمینه انجام شده است. اهمیت این مسئله به حدی است که بسیاری از سرمایه گذاری ها و همکاری های مالی قبل از حصول اطمینان از عدم امکان ورشکستگی انجام نمی شود. برای مطالعه جزییات بیشتر در مورد پیش بینی ورشکستگی کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم رقابت استعماری (Imperialist competitive algorithm)، مجموعه داده های مربوط به پیش بینی ورشکستگی مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.
سفارش انجام پروژه داده کاوی تشخیص بیماری دیابت به کمک روش های شبکه ی عصبی و الگوریتم جستجوی فاخته:
دیابت یا بیماری قند یک اختلال سوخت و سازی (متابولیک) در بدن است. در این بیماری توانایی تولید هورمون انسولین در بدن از بین میرود یا بدن در برابر انسولین مقاوم شده و بنابراین انسولین تولیدی نمیتواند عملکرد طبیعی خود را انجام دهد. نقش اصلی انسولین پایین آوردن قند خون توسط سازوکارهای مختلف است. دیابت دو نوع اصلی دارد. در دیابت نوع یک، تخریب سلولهای بتا در پانکراس منجر به نقص تولید انسولین میشود و در نوع دو، مقاومت پیش رونده بدن به انسولین وجود دارد که در نهایت ممکن است به تخریب سلولهای بتای پانکراس و نقص کامل تولید انسولین منجر شود. برای مطالعه جزییات بیشتر در مورد بیماری دیابت کلیک کنید.
در این پروژه، با استفاده از تلفیق روش های شبکه ی عصبی (neural network) و الگوریتم جستوی فاخته (Cuckoo search)، مجموعه داده های مربوط به بیماری دیابت مورد بررسی قرار گرفته است. نتایج در قالب مستندات و همچنین فایل های شبیه سازی فراهم شده است.