پیاده سازی مقاله: تشخیص افراد ریسکی در صنعت بیمه با استفاده از درخت تصمیم Hoeffding
چکیده:
پیاده سازی مقاله: تشخیص افراد ریسکی در صنعت بیمه با استفاده از درخت تصمیم Hoeffding
چکیده:
پیاده سازی مقاله: بهینه سازی تخصیص منابع در رایانش ابری با استفاده از الگوریتم ارزیابی چندهدفه
چکیده:
پیاده سازی پایان نامه: بهبود امنیت در شبکه های اینترنت اشیا با استفاده از یادگیری ماشینی
از زمان شروع اینترنت اشیا (IoT)، تعداد دستگاه های اینترنت اشیا متصل به اینترنت به سرعت رشد کرده است. با این حال، بسیاری از دستگاه های اینترنت اشیا فاقد استانداردهای امنیتی هستند که دستگاه های غیر اینترنت اشیا دارند. این بدان معنی است که میلیاردها دستگاه هوشمند می توانند به عنوان بخشی از یک حمله استفاده شوند. پتانسیل بهره برداری از دستگاه های اینترنت اشیا، جستجو برای یافتن اقدامات امنیتی مناسب اینترنت اشیا را بسیار مهم می کند. به منظور رفع این نیاز، این مطالعه راهکاری جدید با استفاده از یادگیری ماشین برای بهبود امنیت IoT پیشنهاد می کند.
چکیده: با استفاده از دانش عقیده کاوی میتوان دانش بسیار خوبی از عموم جامعه در شبکههای اجتماعی درباره موضوعات مختلف به دست آورد. با استفاده از عقیده کاوی میتوانیم کشف کنیم که افراد چه عقایدی درباره موضوعات مختلف دارند و چه نظراتی دادهاند که با تحلیل این نظرات نتایج جالبی میتوانیم به دست آوریم، دانش نظر کاوی زیر مجموعه علم داده کاوی میباشد. با تحلیل احساسات و نظرات میتوانیم دلیل شکست یا موفقیت موضوعات مختلف در جامعه را از دید کاربران به دست آوریم. در این پژوهش ما یک روش جدید برای عقیده کاوی در شبکههای اجتماعی درباره فیلمهای سینمایی ارائه کردهایم. نتیجه این تحقیق نشان میدهد که علت موفقیت یا شکست یک فیلم از دید کاربران چه بوده است، در روش پیشنهادی نظرات کاربران ابتدا بر اساس کلمات کلیدی و هشتگ های مهم برچسب گذاری میشود که نظر مثبت میباشد یا منفی و در ادامه بعد از برچسب گذاری تحلیلی برای نظرات انجام میشود که تعداد لایک هر نظر تأثیر بالایی در تحلیل دارد، نتایج شبیه سازی و مقایسه روش پیشنهادی نشان میدهد که روش پیشنهادی از دقت بالایی برخوردار میباشد و میتوان از روش پیشنهادی در دیتاست های مختلف فارسی مورد استفاده قرار داد.
پیاده سازی پایان نامه: پیش بینی نیاز به احیا در نوزادان با استفاده از تکنیک های داده کاوی
تخمین زده می شود که تقریباً 10 درصد از نوزادان در هنگام تولد به نوعی کمک برای تنفس نیاز دارند. با هدف پیشگیری از مرگ و میر نوزادان، در این تحقیق پیش بینی نیاز به احیای نوزاد با توجه به برخی شرایط سلامت نوزاد و مادر و همچنین ویژگی های بارداری و زایمان با استفاده از مدل های داده کاوی انجام می شود.
پیاده سازی پایان نامه: پیش بینی بستری مجدد در بیمارستان ها با تکنیک های داده کاوی
بهداشت و درمان به یکی از بزرگترین صنایع در سطح جهان تبدیل شده است و به همین دلیل منابع زیادی را مصرف می کند. در سالهای اخیر بستری مجدد در بیمارستان به دلیل هزینههای غیرضروری در سیستم مراقبتهای بهداشتی به موضوعی قابل توجه تبدیل شده است. بسیاری از بستریهای مجدد قابل پیشگیری به کیفیت پایین مراقبت در طول اقامت بیمار در بیمارستان و همچنین به ضعیف فرآیند ترخیص مربوط میشود. در سال های اخیر به کارگیری تکنیک های داده کاوی توانسته مداخلات موثر و پیشگیرانه را برای آن اجرا کند.
پیاده سازی پایان نامه: داده کاوی برای انتخاب ویژگی در داده های بیان ژن
شناسایی مهمترین ژنها و توالیهای ژنی (عنوان ویژگیها) ذخیرهشده در مجموعه دادهای از ریزآرایههای بیان ژن یکی از مسائل مهم در حوزه ی پزشکی است. انتخاب مهمترین ژنها و طبقهبندی موارد بر اساس ژنهای انتخابی با استفاده از تکنیک های داده کاوی یکی از راهکار های موجود در این زمینه است.
پیاده سازی پایان نامه: تشخیص نفوذ با استفاده از روش های ترکیبی داده کاوی
با رشد سریع اینترنت، حملات سایبری به شبکه ها و سیستم های رایانه ای نیز به سرعت افزایش یافته است. به عنوان یک اقدام احتیاطی در برابر این حملات، سیستمهای تشخیص نفوذ (IDS) در سیستمهای شبکه مستقر شدهاند. سیستمهای تشخیص نفوذ بخشی از دومین خط دفاعی یک سیستم هستند.. آن ها را می توان همراه با سایر اقدامات امنیتی مانند کنترل دسترسی، مکانیسم های احراز هویت و تکنیک های رمزگذاری به منظور ایمن سازی بهتر سیستم ها در برابر حملات سایبری مستقر کرد. استفاده از ترکیب تکنیک های داده کاوی راهکاری برای ارائه ی یک سیستم تشخیص نفوذ موثر می باشد.
پیاده سازی پایان نامه: تشخیص احتمالات مشکوک به پولشویی با استفاده از تکنیک های دادهکاوی
در سال های اخیر موضوع پولشویی یکی از مباحث مهم اقتصادی می باشد که معضلات فراوانی را برای شرکت های کوچک و بزرگ ایجاد کرده است. از این رو راهکار های متعددی برای حل این مشکل در سراسر جهان پیشنهاد شده است. با توجه به گستردگی داده های موجود در این زمینه یکی از راهکار های حل این مسئله استفاده از تکنیک های داده کاوی می باشد.
پیاده سازی پایان نامه: استفاده از تکنیک های داده کاوی برای حل مسئله ی پیش بینی قیمت سهام
سرمایه گذاری در سهام عرضه شده در بورس اوراق بهادار یکی از گزینه های پرسود در بازار سرمایه است. با این وجود بازار سهام دارای سیستمی غیر خطی و آشوب گونه است که تحت تاثیر شرایط سیاسی، اقتصادی و روانشناسی می باشد. از این رو نحوه ی مدیریت و پیش بینی قیمت سهام برای سرمایه گذاران در بازار سهام اهمیت فراوانی دارد. برای حل مسئله ی پیش بینی قیمت سهام می توان از سیستم های هوشمند غیرخطی استفاده نمود. در این پروژه، با استفاده از تکنیک های داده کاوی راهکاری برای حل این مسئله ارائه می شود.
پیاده سازی مقاله: پیشبینی بیشینه بار مصرفی در بازار برق با استفاده از سریهای زمانی
چکیده:
پیاده سازی مقاله: تشخیص حملات سایبری پیشرفته با استفاده از مدل سازی رفتاری مبتنی بر پردازش زبان طبیعی
چکیده:
پیاده سازی مقاله: تشخیص امضای آفلاین با استفاده از SVM
چکیده:
پیاده سازی مقاله: ارایه الگوریتمی جدید برای جستجو در درخت های تصمیم با عمق زیاد
چکیده:
پیاده سازی مقاله: تشخیص سایت های فیشینگ با استفاده از الگوریتم جنگل تصادفی
چکیده:
پیاده سازی مقاله: عقیده کاوی مبتنی بر منطق فازی جهت ارائه سیستمهای پیشنهاددهنده
چکیده:
پیاده سازی مقاله: استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان
چکیده:
دریافت مقاله:
پیاده سازی مقاله: تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی
چکیده:
استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.
پیاده سازی مقاله: روشی جهت تشخیص بدافزار با استفاده از الگوریتم های داده کاوی و هوش مصنوعی
چکیده:
بدافزار به هرگونه برنامه کامپیوتری اطلاق می شود که دارای اهداف مخرب باشد. این برنامه ها مهمترین تهدید برای سیستم هایکامپیوتری به حساب می آیند. تنوع این بدافزارها باعث محدود شدن راه کارهای مقابله با آنها شده است، به گونه ای که روزانه میلیون ها سیستمکامپیوتری بر اثر آسیب های ناشی از انواع ویروس ها، تروجان ها و کرم های اینترنتی و غیره آلوده می شوند. در سال های اخیر یکی از مهمترینچالش های امنیت اطلاعات و شبکه های ارتباطی، افزایش روز افزون انواع بدافزارها و به دنبال آن یافتن راه های مناسب جهت حفاظت سیستم ها درمقابل آنهاست که از مهمترین دغدغه های برنامه نویسان و متخصصین امنیت اطلاعات، شناخت به موقع و یافتن راه های مقابله با اثرات مخرباینگونه بدافزارها می باشد. در این راستا طی سالهای اخیر استفاده از الگوریتم های داده کاوی و هوش مصنوعی بعنوان یکی از روشهای نوظهور وامیدوار کننده توانسته است کاربرد بسیاری جهت شناسایی و تشخیص انواع بدافزارها داشته باشد. لذا در این تحقیق سعی کردیم با استفاده ازشبکه عصبی مصنوعی و الگوریتم ازدحام ذرات، فایل های آلوده به بدافزار را تشخیص دهیم. پیاده سازی روش پیشنهادی نشان میدهد که توانستهاست فایل های آلوده به بدافزار را با استفاده از مجموعه داده مربوط به فایل های سالم و آلوده به بدافزار با دقت 0.91 درصد تشخیص دهد که نشان ازعملکرد بالای آن دارد.
پیاده سازی مقاله: بکارگیری تکنیک های داده کاوی در تشخیص و پیش بینی کلاهبرداری بانکی
چکیده:
با گسترش روز افزون استفاده از سامانه های نوین بانکی و افزایش تعداد عملیات بانکی، سوء استفاده های مالی و تقلب در این عملیات بیشاز پیش گسترش پیدا کرده است. اینگونه سوء استفاده ها علاوه بر اتلاف منابع مالی، باعث کاهش اعتماد مشتریان به استفاده از سامانه های نوینبانکی و در نتیجه کاهش اثر بخشی این سامانه ها در مدیریت بهینه ی سرمایه و تراکنش های مالی می شود. در این پژوهش جهت کشف تقلببانکی بر روی مجموعه داده های بانکی ، از ترکیب الگوریتم های داده کاوی استفاده شده است. برای انجام کار در ابتدا، خوشه بندی رکوردهای دادهای موجود در مجموعه داده ها صورت گرفته است و به دنبال آن، تشخیص تراکنش های بانکی شبهه دار، در زمان انجام تراکنش تشخیص داده میشود. نتایج حاصل نشان می دهد که روش پیشنهادی دارای میزان دقت بالاتری نسبت به الگوریتم های داده کاوی دیگر همچون درخت تصمیم J48و جنگلهای تصادفی دارد.